Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2019, Volume 16, Pages 449–464
DOI: https://doi.org/10.33048/semi.2019.16.027
(Mi semr1070)
 

This article is cited in 7 scientific papers (total in 7 papers)

Real, complex and functional analysis

Brezis–Marcus type inequalities with Lamb constant

R. G. Nasibullin

Kazan Federal University, 18, Kremlyovskaya str., Kazan, 420008, Russia
Full-text PDF (191 kB) Citations (7)
References:
Abstract: Hardy-type inequalities with an additional term are proved for compactly supported smooth functions on open convex sets in the Euclidean space. We obtain one-dimensional Lp-inequalities and their multidimensional analogs on arbitrary domains, on regular sets, on domains with θ-cone condition and on convex domains. We use Bessel's function and the Lamb constant.
Keywords: Hardy inequality, additional term, Bessel function, Lamb constant, distance function, inner radius.
Funding agency Grant number
Russian Science Foundation 18-11-00115
This work is supported by the Russian Science Foundation under grant № 18-11-00115.
Received December 30, 2018, published April 2, 2019
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: 26D15
Language: English
Citation: R. G. Nasibullin, “Brezis–Marcus type inequalities with Lamb constant”, Sib. Èlektron. Mat. Izv., 16 (2019), 449–464
Citation in format AMSBIB
\Bibitem{Nas19}
\by R.~G.~Nasibullin
\paper Brezis--Marcus type inequalities with Lamb constant
\jour Sib. \`Elektron. Mat. Izv.
\yr 2019
\vol 16
\pages 449--464
\mathnet{http://mi.mathnet.ru/semr1070}
\crossref{https://doi.org/10.33048/semi.2019.16.027}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000463139000001}
Linking options:
  • https://www.mathnet.ru/eng/semr1070
  • https://www.mathnet.ru/eng/semr/v16/p449
  • This publication is cited in the following 7 articles:
    1. Nasibullin R., “Hardy and Rellich Type Inequalities With Remainders”, Czech. Math. J., 72:1 (2022), 87–110  crossref  mathscinet  zmath  isi  scopus
    2. R. G. Nasibullin, “One-dimensional Lp-Hardy-type inequalities for special weight functions and their applications”, Ufa Math. J., 14:3 (2022), 97–116  mathnet  crossref
    3. R. G. Nasibullin, “Hardy type inequalities with additional terms”, Russian Math. (Iz. VUZ), 66:11 (2022), 46–78  mathnet  mathnet  crossref  crossref
    4. R. G. Nasibullin, R. V. Makarov, “Hardy's inequalities with remainders and lamb-type equations”, Siberian Math. J., 61:6 (2020), 1102–1119  mathnet  crossref  crossref  isi  elib
    5. R. V. Makarov, R. G. Nasibullin, G. R. Shaymardanova, “Weighted Hardy type inequalities and parametric Lamb equation”, Lobachevskii J. Math., 41:11, SI (2020), 2198–2210  crossref  mathscinet  zmath  isi  scopus
    6. R. V. Makarov, R. G. Nasibullin, “Hardy type inequalities and parametric Lamb equation”, Indag. Math.-New Ser., 31:4 (2020), 632–649  crossref  mathscinet  zmath  isi  scopus
    7. Nasibullin R.G., “Multidimensional Hardy Type Inequalities With Remainders”, Lobachevskii J. Math., 40:9, SI (2019), 1383–1396  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:378
    Full-text PDF :173
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025