Loading [MathJax]/jax/output/SVG/config.js
Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2019, Volume 16, Pages 369–405
DOI: https://doi.org/10.33048/semi.2019.16.022
(Mi semr1064)
 

This article is cited in 4 scientific papers (total in 4 papers)

Real, complex and functional analysis

The matrix analysis of spectral projections for the perturbed self-adjoint operators

N. B. Uskova

Voronezh State Technical University, 14, Moskovsky ave., Voronezh, 394026, Russia
Full-text PDF (306 kB) Citations (4)
References:
Abstract: We study bounded perturbations of an unbounded positive definite self-adjoint operator with discrete spectrum. The spectrum has semi-simple eigenvalues with finite geometric multiplicity and the perturbation belongs to operator space defined by rate of the off-diagonal decay of the operator matrix. We show that the spectral projections and the resolvent of the perturbed operator belong to the same space as the perturbation. These results are applied to the Hill operator and the operator with matrix potential. We also consider the inverse problem and the modified Galerkin method.
Keywords: the method of similar operators, the Hill operator, spectral projection.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00732
16-01-00197_а
Received November 28, 2017, published March 19, 2019
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 35L75
Language: Russian
Citation: N. B. Uskova, “The matrix analysis of spectral projections for the perturbed self-adjoint operators”, Sib. Èlektron. Mat. Izv., 16 (2019), 369–405
Citation in format AMSBIB
\Bibitem{Usk19}
\by N.~B.~Uskova
\paper The matrix analysis of spectral projections for the perturbed self-adjoint operators
\jour Sib. \`Elektron. Mat. Izv.
\yr 2019
\vol 16
\pages 369--405
\mathnet{http://mi.mathnet.ru/semr1064}
\crossref{https://doi.org/10.33048/semi.2019.16.022}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3938781}
Linking options:
  • https://www.mathnet.ru/eng/semr1064
  • https://www.mathnet.ru/eng/semr/v16/p369
  • This publication is cited in the following 4 articles:
    1. A. G. Baskakov, I. A. Krishtal, N. B. Uskova, “O sglazhivanii operatornogo koeffitsienta differentsialnogo operatora pervogo poryadka v banakhovom prostranstve”, Materialy Voronezhskoi mezhdunarodnoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii  i smezhnye problemy», Voronezh, 28 yanvarya – 2 fevralya 2021 g.  Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 206, VINITI RAN, M., 2022, 3–14  mathnet  crossref
    2. G. V. Garkavenko, N. B. Uskova, “Ob usloviyakh diagonalizuemosti vozmuschennogo raznostnogo operatora v nekotorykh prostranstvakh”, Mezhdunar. nauch.-issled. zhurn., 2021, no. 7(109), 6–14  mathnet  crossref
    3. G. V. Garkavenko, N. B. Uskova, “O spektralnykh svoistvakh odnoi trekhdiagonalnoi beskonechnoi matritsy”, Materialy 20 Mezhdunarodnoi Saratovskoi zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya», Saratov, 28 yanvarya — 1 fevralya 2020 g.  Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 199, VINITI RAN, M., 2021, 31–42  mathnet  crossref
    4. I. A. Krishtal, N. B. Uskova, “Spektralnye svoistva differentsialnykh operatorov pervogo poryadka s involyutsiei i gruppy operatorov”, Sib. elektron. matem. izv., 16 (2019), 1091–1132  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:456
    Full-text PDF :183
    References:60
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025