Loading [MathJax]/jax/output/SVG/config.js
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2022, Number 11, Pages 52–88
DOI: https://doi.org/10.26907/0021-3446-2022-11-52-88
(Mi ivm9828)
 

This article is cited in 1 scientific paper (total in 1 paper)

The geometry of one-dimensional and spatial Hardy type inequalities

R. G. Nasibullin

Kazan Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia
Full-text PDF (543 kB) Citations (1)
References:
Abstract: The proofs of many hardy-type inequalities are based on one-dimensional inequalities. The difficulties that come from the domains of integration are implicitly reflected in the one-dimensional inequalities on the interval used to substantiate the spatial analogs. One-dimensional inequalities are the analytical basis for solving geometric problems. The paper provides a brief overview of the results in this direction. An attempt is made to systematically present the theory of Hardy-type inequalities with additional terms involving the geometric characteristics of the regions, for example, such as the volume, diameter, inner radius, or the maximum conformal modulus of the region.
Keywords: Hardy's inequality, additional term, volume, diameter, inner radius, maximal conformal modulus, one-dimensional inequality, spatial inequality, convex domain, Bessel function, Poincaré metric.
Funding agency Grant number
Russian Science Foundation 18-11-00115
Received: 02.02.2022
Revised: 28.04.2022
Accepted: 29.06.2022
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2022, Volume 66, Issue 11, Pages 46–78
DOI: https://doi.org/10.3103/S1066369X22110056
Document Type: Article
UDC: 517.5: 517.546
Language: Russian
Citation: R. G. Nasibullin, “The geometry of one-dimensional and spatial Hardy type inequalities”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 11, 52–88; Russian Math. (Iz. VUZ), 66:11 (2022), 46–78
Citation in format AMSBIB
\Bibitem{Nas22}
\by R.~G.~Nasibullin
\paper The geometry of one-dimensional and spatial Hardy type inequalities
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2022
\issue 11
\pages 52--88
\mathnet{http://mi.mathnet.ru/ivm9828}
\crossref{https://doi.org/10.26907/0021-3446-2022-11-52-88}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2022
\vol 66
\issue 11
\pages 46--78
\crossref{https://doi.org/10.3103/S1066369X22110056}
Linking options:
  • https://www.mathnet.ru/eng/ivm9828
  • https://www.mathnet.ru/eng/ivm/y2022/i11/p52
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:127
    Full-text PDF :49
    References:26
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025