This work was carried out with the financial support of the Ministry of Education and Science of the Russian Federation,
in the framework of Megagrant no. 075-15-2019-1926.
The work of the second author was also supported by the Simons Foundation and the August Möbius Contest.
The second author is a winner of the “Young Russian Mathematics” Competition and is grateful to the sponsors and the jury.
\Bibitem{KupSag20}
\by A.~B.~Kupavskii, A.~A.~Sagdeev
\paper Ramsey theory in the $n$-space with Chebyshev metric
\jour Russian Math. Surveys
\yr 2020
\vol 75
\issue 5
\pages 965--967
\mathnet{http://mi.mathnet.ru/eng/rm9958}
\crossref{https://doi.org/10.1070/RM9958}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4154851}
\zmath{https://zbmath.org/?q=an:1458.05251}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020RuMaS..75..965K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000606946400001}
\elib{https://elibrary.ru/item.asp?id=44982592}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85099925629}
Linking options:
https://www.mathnet.ru/eng/rm9958
https://doi.org/10.1070/RM9958
https://www.mathnet.ru/eng/rm/v75/i5/p191
This publication is cited in the following 16 articles:
N. Frankl, A. Kupavskii, A. Sagdeev, “Solution to a conjecture of Schmidt and Tuller on one-dimensional packings and coverings”, Proc. Amer. Math. Soc., 151:6 (2023), 2353–2362
V. Kirova, A. Sagdeev, “Two-colorings of normed spaces without long monochromatic unit arithmetic progressions”, SIAM J. Discrete Math., 37:2 (2023), 718
A. M. Raigorodskii, V. S. Karas, “Asymptotics of the Independence Number of a Random Subgraph of the Graph G(n,r,<s)”, Math. Notes, 111:1 (2022), 124–131
A. B. Kupavskii, A. A. Sagdeev, N. Frankl, “Infinite sets can be Ramsey in the Chebyshev metric”, Russian Math. Surveys, 77:3 (2022), 549–551
V. S. Karas, A. M. Raigorodskii, “On Ramsey numbers for arbitrary sequences of graphs”, Dokl. Math., 105:1 (2022), 14–17
V. O. Kirova, A. A. Sagdeev, “Two-colorings of normed spaces with no long monochromatic unit arithmetic progressions”, Dokl. Math., 106:2 (2022), 348–350
A. D. Tolmachev, D. S. Protasov, V. A. Voronov, “Coverings of planar and three-dimensional sets with subsets of smaller diameter”, Discrete Appl. Math., 320 (2022), 270–281
Yu. A. Demidovich, M. E. Zhukovskii, “Chromatic Numbers of Distance Graphs without Short Odd Cycles in Rational Spaces”, Math. Notes, 109:5 (2021), 727–734
Ph. A. Pushnyakov, A. M. Raigorodskii, “Estimate of the number of edges in subgraphs of a Johnson graph”, Dokl. Math., 104:1 (2021), 193–195
A. D. Tolmachev, D. S. Protasov, “Covering planar sets”, Dokl. Math., 104:1 (2021), 196–199
V. S. Karas, P. A. Ogarok, A. M. Raigorodskii, “Asymptotics of the independence number of a random subgraph of the graph G(n,r,<s)”, Dokl. Math., 104:1 (2021), 173–174
Mikhail M. Koshelev, “Lower bounds on the clique-chromatic numbers of some distance graphs”, Moscow J. Comb. Number Th., 10:2 (2021), 141
Mikhail Koshelev, “New lower bound on the modularity of Johnson graphs”, Moscow J. Comb. Number Th., 10:1 (2021), 77
Mikhail Ipatov, “Exact modularity of line graphs of complete graphs”, Moscow J. Comb. Number Th., 10:1 (2021), 61–75
P. A. Ogarok, A. M. Raigorodskii, “On stability of the independence number of a certain distance graph”, Problems Inform. Transmission, 56:4 (2020), 345–357
A. M. Raigorodskii, “On dividing sets into parts of smaller diameter”, Dokl. Math., 102:3 (2020), 510–512