Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2020, Volume 75, Issue 5, Pages 965–967
DOI: https://doi.org/10.1070/RM9958
(Mi rm9958)
 

This article is cited in 16 scientific papers (total in 16 papers)

Brief Communications

Ramsey theory in the n-space with Chebyshev metric

A. B. Kupavskiiab, A. A. Sagdeeva

a Moscow Institute of Physics and Technology (National Research University)
b CNRS, Grenoble, France
References:
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 075-15-2019-1926
Nonprofit foundation for support of young scientists "Möbius Contest"
Simons Foundation
Contest «Young Russian Mathematics»
This work was carried out with the financial support of the Ministry of Education and Science of the Russian Federation, in the framework of Megagrant no. 075-15-2019-1926. The work of the second author was also supported by the Simons Foundation and the August Möbius Contest. The second author is a winner of the “Young Russian Mathematics” Competition and is grateful to the sponsors and the jury.
Received: 14.05.2020
Bibliographic databases:
Document Type: Article
MSC: 05D10
Language: English
Original paper language: Russian
Citation: A. B. Kupavskii, A. A. Sagdeev, “Ramsey theory in the n-space with Chebyshev metric”, Russian Math. Surveys, 75:5 (2020), 965–967
Citation in format AMSBIB
\Bibitem{KupSag20}
\by A.~B.~Kupavskii, A.~A.~Sagdeev
\paper Ramsey theory in the $n$-space with Chebyshev metric
\jour Russian Math. Surveys
\yr 2020
\vol 75
\issue 5
\pages 965--967
\mathnet{http://mi.mathnet.ru/eng/rm9958}
\crossref{https://doi.org/10.1070/RM9958}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4154851}
\zmath{https://zbmath.org/?q=an:1458.05251}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020RuMaS..75..965K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000606946400001}
\elib{https://elibrary.ru/item.asp?id=44982592}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85099925629}
Linking options:
  • https://www.mathnet.ru/eng/rm9958
  • https://doi.org/10.1070/RM9958
  • https://www.mathnet.ru/eng/rm/v75/i5/p191
  • This publication is cited in the following 16 articles:
    1. N. Frankl, A. Kupavskii, A. Sagdeev, “Solution to a conjecture of Schmidt and Tuller on one-dimensional packings and coverings”, Proc. Amer. Math. Soc., 151:6 (2023), 2353–2362  crossref  mathscinet
    2. V. Kirova, A. Sagdeev, “Two-colorings of normed spaces without long monochromatic unit arithmetic progressions”, SIAM J. Discrete Math., 37:2 (2023), 718  crossref  mathscinet  zmath
    3. A. M. Raigorodskii, V. S. Karas, “Asymptotics of the Independence Number of a Random Subgraph of the Graph G(n,r,<s)”, Math. Notes, 111:1 (2022), 124–131  mathnet  crossref  crossref  mathscinet  isi
    4. A. B. Kupavskii, A. A. Sagdeev, N. Frankl, “Infinite sets can be Ramsey in the Chebyshev metric”, Russian Math. Surveys, 77:3 (2022), 549–551  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. V. S. Karas, A. M. Raigorodskii, “On Ramsey numbers for arbitrary sequences of graphs”, Dokl. Math., 105:1 (2022), 14–17  mathnet  crossref  crossref  mathscinet  elib
    6. V. O. Kirova, A. A. Sagdeev, “Two-colorings of normed spaces with no long monochromatic unit arithmetic progressions”, Dokl. Math., 106:2 (2022), 348–350  mathnet  crossref  crossref  mathscinet  elib
    7. A. D. Tolmachev, D. S. Protasov, V. A. Voronov, “Coverings of planar and three-dimensional sets with subsets of smaller diameter”, Discrete Appl. Math., 320 (2022), 270–281  crossref  mathscinet  zmath
    8. Yu. A. Demidovich, M. E. Zhukovskii, “Chromatic Numbers of Distance Graphs without Short Odd Cycles in Rational Spaces”, Math. Notes, 109:5 (2021), 727–734  mathnet  crossref  crossref  isi  elib
    9. Ph. A. Pushnyakov, A. M. Raigorodskii, “Estimate of the number of edges in subgraphs of a Johnson graph”, Dokl. Math., 104:1 (2021), 193–195  mathnet  crossref  crossref  zmath  elib
    10. A. D. Tolmachev, D. S. Protasov, “Covering planar sets”, Dokl. Math., 104:1 (2021), 196–199  mathnet  crossref  crossref  zmath  elib
    11. V. S. Karas, P. A. Ogarok, A. M. Raigorodskii, “Asymptotics of the independence number of a random subgraph of the graph G(n,r,<s)”, Dokl. Math., 104:1 (2021), 173–174  mathnet  crossref  crossref  zmath  elib
    12. Mikhail M. Koshelev, “Lower bounds on the clique-chromatic numbers of some distance graphs”, Moscow J. Comb. Number Th., 10:2 (2021), 141  crossref  zmath
    13. Mikhail Koshelev, “New lower bound on the modularity of Johnson graphs”, Moscow J. Comb. Number Th., 10:1 (2021), 77  crossref  zmath
    14. Mikhail Ipatov, “Exact modularity of line graphs of complete graphs”, Moscow J. Comb. Number Th., 10:1 (2021), 61–75  crossref  mathscinet
    15. P. A. Ogarok, A. M. Raigorodskii, “On stability of the independence number of a certain distance graph”, Problems Inform. Transmission, 56:4 (2020), 345–357  mathnet  crossref  crossref  isi
    16. A. M. Raigorodskii, “On dividing sets into parts of smaller diameter”, Dokl. Math., 102:3 (2020), 510–512  mathnet  crossref  crossref  zmath  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:434
    Russian version PDF:50
    English version PDF:20
    References:39
    First page:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025