Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2004, Volume 59, Issue 4, Pages 737–770
DOI: https://doi.org/10.1070/RM2004v059n04ABEH000760
(Mi rm760)
 

This article is cited in 20 scientific papers (total in 20 papers)

Knizhnik–Zamolodchikov equations for positive genus and Krichever–Novikov algebras

M. Schlichenmaiera, O. K. Sheinmanbc

a University of Luxembourg
b Steklov Mathematical Institute, Russian Academy of Sciences
c Independent University of Moscow
References:
Abstract: In this paper a global operator approach to the Wess–Zumino–Witten–Novikov theory for compact Riemann surfaces of arbitrary genus with marked points is developed. The term ‘global’ here means that Krichever–Novikov algebras of gauge and conformal symmetries (that is, algebras of global symmetries) are used instead of loop algebras and Virasoro algebras (which are local in this context). The basic elements of this global approach are described in a previous paper of the authors (Russ. Math. Surveys 54:1 (1999)). The present paper gives a construction of the conformal blocks and of a projectively flat connection on the bundle formed by them.
Received: 15.03.2004
Bibliographic databases:
Document Type: Article
UDC: 517.774
MSC: Primary 17B66, 17B67, 81R10; Secondary 14H15, 14H55, 30F30
Language: English
Original paper language: Russian
Citation: M. Schlichenmaier, O. K. Sheinman, “Knizhnik–Zamolodchikov equations for positive genus and Krichever–Novikov algebras”, Russian Math. Surveys, 59:4 (2004), 737–770
Citation in format AMSBIB
\Bibitem{SchShe04}
\by M.~Schlichenmaier, O.~K.~Sheinman
\paper Knizhnik--Zamolodchikov equations for positive genus and Krichever--Novikov algebras
\jour Russian Math. Surveys
\yr 2004
\vol 59
\issue 4
\pages 737--770
\mathnet{http://mi.mathnet.ru/eng/rm760}
\crossref{https://doi.org/10.1070/RM2004v059n04ABEH000760}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2106647}
\zmath{https://zbmath.org/?q=an:1066.17014}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004RuMaS..59..737S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000225645100003}
\elib{https://elibrary.ru/item.asp?id=13445835}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-11144281296}
Linking options:
  • https://www.mathnet.ru/eng/rm760
  • https://doi.org/10.1070/RM2004v059n04ABEH000760
  • https://www.mathnet.ru/eng/rm/v59/i4/p147
    Cycle of papers
    This publication is cited in the following 20 articles:
    1. O. K. Sheinman, “Quantization of integrable systems with spectral parameter on a Riemann surface”, Dokl. Math., 102:3 (2020), 524–527  mathnet  crossref  crossref  zmath  isi  elib
    2. Liu D., Pei Yu., Xia L., “Representations For Three-Point Lie Algebras of Genus Zero”, Int. J. Math., 30:14 (2019), 1950070  crossref  mathscinet  isi
    3. Schlichenmaier M., “N -point Virasoro algebras are multipoint Krichever–Novikov-type algebras”, Commun. Algebr., 45:2 (2017), 776–821  crossref  mathscinet  zmath  isi  elib  scopus
    4. Cox B., Guo X., Lu R., Zhao K., “Simple Superelliptic Lie Algebras”, Commun. Contemp. Math., 19:3 (2017), 1650032  crossref  mathscinet  zmath  isi
    5. O. K. Sheinman, “Lax operator algebras and integrable systems”, Russian Math. Surveys, 71:1 (2016), 109–156  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    6. Cox B. Guo X. Lu R. Zhao K., “N-Point Virasoro Algebras and Their Modules of Densities”, Commun. Contemp. Math., 16:3 (2014), 1350047  crossref  mathscinet  zmath  isi  scopus
    7. Martin Schlichenmaier, Harmonic and Complex Analysis and its Applications, 2014, 325  crossref
    8. MARTIN SCHLICHENMAIER, “KRICHEVER-NOVIKOV TYPE ALGEBRAS — PERSONAL RECOLLECTIONS OF JULIUS WESS”, Int. J. Mod. Phys. Conf. Ser, 13:01 (2012), 158  crossref  mathscinet
    9. Schlichenmaier M., “Deformations of the Witt, Virasoro, and Current Algebra”, Generalized Lie Theory in Mathematics, Physics and Beyond, 2009, 219–234  crossref  mathscinet  zmath  isi
    10. M. Schlichenmaier, O. K. Sheinman, “Central extensions of Lax operator algebras”, Russian Math. Surveys, 63:4 (2008), 727–766  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    11. Wagemann F., “Deformations of Lie algebras of vector fields arising from families of schemes”, J. Geom. Phys., 58:2 (2008), 165–178  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    12. Schlichenmaier M., “Classification of central extensions of Lax operator algebras”, Geometric Methods in Physics, AIP Conference Proceedings, 1079, 2008, 227–234  crossref  mathscinet  zmath  adsnasa  isi
    13. Fialowski A., Schlichenmaier M., “Global geometric deformations of the Virasoro algebra, current and affine algebras by Krichever-Novikov type algebras”, Internat. J. Theoret. Phys., 46:11 (2007), 2708–2724  crossref  mathscinet  zmath  adsnasa  isi  elib
    14. O. K. Sheinman, “Krichever–Novikov Algebras, their Representations and Applications in Geometry and Mathematical Physics”, Proc. Steklov Inst. Math., 274, suppl. 1 (2011), S85–S161  mathnet  crossref  crossref  zmath
    15. Schlichenmaier M., “Higher Genus Affine Lie Algebras of Krichever - Novikov Type”, Difference Equations, Special Functions and Orthogonal Polynomials, 2007, 589–599  crossref  mathscinet  zmath  isi
    16. Schlichenmaier M., “A global operator approach to Wess-Zumino-Novikov-Witten models”, XXVI Workshop on Geometrical Methods in Physics, AIP Conference Proceedings, 956, 2007, 107–119  crossref  mathscinet  zmath  adsnasa  isi
    17. Martin Schlichenmaier, Theoretical and Mathematical Physics, An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces, 2007, 103  crossref
    18. Fialowski A., Schlichenmaier M., “Global geometric deformations of current algebras as Krichever-Novikov type algebras”, Comm. Math. Phys., 260:3 (2005), 579–612  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    19. O. K. Sheinman, “Projective Flat Connections on Moduli Spaces of Riemann Surfaces and the Knizhnik–Zamolodchikov Equations”, Proc. Steklov Inst. Math., 251 (2005), 293–304  mathnet  mathscinet  zmath
    20. Sheinman O.K., “Krichever-Novikov algebras and their representations”, Noncommutative Geometry and Representation Theory in Mathematical Physics, Contemporary Mathematics Series, 391, 2005, 313–321  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:717
    Russian version PDF:295
    English version PDF:35
    References:89
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025