Abstract:
A new class of infinite-dimensional Lie algebras, called Lax operator algebras, is presented, along with a related unifying approach to finite-dimensional integrable systems with a spectral parameter on a Riemann surface such as the Calogero–Moser and Hitchin systems. In particular, the approach includes (non-twisted) Kac–Moody algebras and integrable systems with a rational spectral parameter. The presentation is based on quite simple ideas about the use of gradings of semisimple Lie algebras and their interaction with the Riemann–Roch theorem. The basic properties of Lax operator algebras and the basic facts about the theory of the integrable systems in question are treated (and proved) from this general point of view. In particular, the existence of commutative hierarchies and their Hamiltonian properties are considered. The paper concludes with an application of Lax operator algebras to prequantization of finite-dimensional integrable systems.
Bibliography: 51 titles.
Keywords:
gradings of semisimple Lie algebras, Lax operator algebras, integrable systems, spectral parameter on a Riemann surface, Tyurin parameters, Hamiltonian theory, prequantization.
This publication is cited in the following 9 articles:
Mohamed Benkhali, Jaouad Kharbach, Zakia Hammouch, Walid Chatar, Mohammed El Ghamari, Abdellah Rezzouk, Mohammed Ouazzani-Jamil, “Analysis of the multi-phenomenal nonlinear system : Testing Integrability and detecting chaos”, Results in Physics, 47 (2023), 106346
P. I. Borisova, O. K. Sheinman, “Hitchin Systems on Hyperelliptic Curves”, Proc. Steklov Inst. Math., 311 (2020), 22–35
O. K. Sheinman, “Quantization of integrable systems with spectral parameter on a Riemann surface”, Dokl. Math., 102:3 (2020), 524–527
O. K. Sheinman, “Spectral Curves of the Hyperelliptic Hitchin Systems”, Funct. Anal. Appl., 53:4 (2019), 291–303
O. K. Sheinman, “Certain reductions of Hitchin systems of rank 2 and genera 2 and 3”, Dokl. Math., 97:2 (2018), 144–146
Elena Yu. Bunkova, “Hirzebruch functional equation: classification of solutions”, Proc. Steklov Inst. Math., 302 (2018), 33–47
O. K. Sheinman, “Matrix divisors on Riemann surfaces and Lax operator algebras”, Trans. Moscow Math. Soc., 78 (2017), 109–121
V. M. Buchstaber, “Polynomial dynamical systems and the Korteweg–de Vries equation”, Proc. Steklov Inst. Math., 294 (2016), 176–200
Oleg K. Sheinman, “Global current algebras and localization on Riemann surfaces”, Mosc. Math. J., 15:4 (2015), 833–846