Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2016, Volume 71, Issue 1, Pages 109–156
DOI: https://doi.org/10.1070/RM9703
(Mi rm9703)
 

This article is cited in 9 scientific papers (total in 9 papers)

Lax operator algebras and integrable systems

O. K. Sheinman

Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: A new class of infinite-dimensional Lie algebras, called Lax operator algebras, is presented, along with a related unifying approach to finite-dimensional integrable systems with a spectral parameter on a Riemann surface such as the Calogero–Moser and Hitchin systems. In particular, the approach includes (non-twisted) Kac–Moody algebras and integrable systems with a rational spectral parameter. The presentation is based on quite simple ideas about the use of gradings of semisimple Lie algebras and their interaction with the Riemann–Roch theorem. The basic properties of Lax operator algebras and the basic facts about the theory of the integrable systems in question are treated (and proved) from this general point of view. In particular, the existence of commutative hierarchies and their Hamiltonian properties are considered. The paper concludes with an application of Lax operator algebras to prequantization of finite-dimensional integrable systems.
Bibliography: 51 titles.
Keywords: gradings of semisimple Lie algebras, Lax operator algebras, integrable systems, spectral parameter on a Riemann surface, Tyurin parameters, Hamiltonian theory, prequantization.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.
Received: 14.01.2016
Bibliographic databases:
Document Type: Article
UDC: 512.554.3
Language: English
Original paper language: Russian
Citation: O. K. Sheinman, “Lax operator algebras and integrable systems”, Russian Math. Surveys, 71:1 (2016), 109–156
Citation in format AMSBIB
\Bibitem{She16}
\by O.~K.~Sheinman
\paper Lax operator algebras and integrable systems
\jour Russian Math. Surveys
\yr 2016
\vol 71
\issue 1
\pages 109--156
\mathnet{http://mi.mathnet.ru/eng/rm9703}
\crossref{https://doi.org/10.1070/RM9703}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507465}
\zmath{https://zbmath.org/?q=an:06599756}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016RuMaS..71..109S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376511100003}
\elib{https://elibrary.ru/item.asp?id=25707792}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84973541104}
Linking options:
  • https://www.mathnet.ru/eng/rm9703
  • https://doi.org/10.1070/RM9703
  • https://www.mathnet.ru/eng/rm/v71/i1/p117
  • This publication is cited in the following 9 articles:
    1. Mohamed Benkhali, Jaouad Kharbach, Zakia Hammouch, Walid Chatar, Mohammed El Ghamari, Abdellah Rezzouk, Mohammed Ouazzani-Jamil, “Analysis of the multi-phenomenal nonlinear system : Testing Integrability and detecting chaos”, Results in Physics, 47 (2023), 106346  crossref
    2. P. I. Borisova, O. K. Sheinman, “Hitchin Systems on Hyperelliptic Curves”, Proc. Steklov Inst. Math., 311 (2020), 22–35  mathnet  crossref  crossref  mathscinet  isi  elib
    3. O. K. Sheinman, “Quantization of integrable systems with spectral parameter on a Riemann surface”, Dokl. Math., 102:3 (2020), 524–527  mathnet  crossref  crossref  zmath  isi  elib
    4. O. K. Sheinman, “Spectral Curves of the Hyperelliptic Hitchin Systems”, Funct. Anal. Appl., 53:4 (2019), 291–303  mathnet  crossref  crossref  mathscinet  isi  elib
    5. O. K. Sheinman, “Certain reductions of Hitchin systems of rank 2 and genera 2 and 3”, Dokl. Math., 97:2 (2018), 144–146  mathnet  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  scopus
    6. Elena Yu. Bunkova, “Hirzebruch functional equation: classification of solutions”, Proc. Steklov Inst. Math., 302 (2018), 33–47  mathnet  crossref  crossref  mathscinet  isi  elib
    7. O. K. Sheinman, “Matrix divisors on Riemann surfaces and Lax operator algebras”, Trans. Moscow Math. Soc., 78 (2017), 109–121  mathnet  crossref  mathscinet  elib
    8. V. M. Buchstaber, “Polynomial dynamical systems and the Korteweg–de Vries equation”, Proc. Steklov Inst. Math., 294 (2016), 176–200  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    9. Oleg K. Sheinman, “Global current algebras and localization on Riemann surfaces”, Mosc. Math. J., 15:4 (2015), 833–846  mathnet  crossref  mathscinet  zmath  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1145
    Russian version PDF:154
    English version PDF:68
    References:128
    First page:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025