Abstract:
This is a survey of results about the behaviour of Hermite–Padé approximants for graphs of Markov functions, and a survey of interpolation problems leading to Apéry's result about the
irrationality of the value ζ(3) of the Riemann zeta function. The first example is given of a cyclic graph for which the Hermite–Padé problem leads to Apéry's theorem. Explicit formulae for solutions are obtained, namely, Rodrigues' formulae and integral representations. The asymptotic behaviour of the approximants is studied, and recurrence formulae are found.
This publication is cited in the following 23 articles:
A. I. Aptekarev, A. V. Dyachenko, V. G. Lysov, “Meixner Multiply Orthogonal Polynomials on Interleaved Lattices”, Math. Notes, 115:4 (2024), 642–646
Alan Sokal, “Multiple orthogonal polynomials, 𝑑-orthogonal polynomials, production matrices, and branched continued fractions”, Trans. Amer. Math. Soc. Ser. B, 11:23 (2024), 762
Alexander Aptekarev, Alexander Dyachenko, Vladimir Lysov, “On Perfectness of Systems of Weights Satisfying Pearson's Equation with Nonstandard Parameters”, Axioms, 12:1 (2023), 89
V. G. Lysov, “Mnogourovnevye interpolyatsii dlya obobschennoi sistemy Nikishina na grafe-dereve”, Tr. MMO, 83, no. 2, MTsNMO, M., 2022, 345–361
A. P. Starovoitov, N. V. Ryabchenko, “O determinantnykh predstavleniyakh mnogochlenov Ermita–Pade”, Tr. MMO, 83, no. 1, MTsNMO, M., 2022, 17–35
Fischler S., Rivoal T., “Linear Independence of Values of G-Functions, II: Outside the Disk of Convergence”, Ann. Math. Que., 45:1 (2021), 53–93
V. G. Lysov, “O diofantovykh priblizheniyakh proizvedeniya logarifmov”, Preprinty IPM im. M. V. Keldysha, 2018, 158, 20 pp.
Alexander Viktorovich Dyachenko, Vladimir Genrikhovich Lysov, “On polynomials of multiple discrete orthogonality on lattices with shift”, KIAM Prepr., 2018, no. 218, 1
M. V. Sidortsov, N. A. Starovoitova, A. P. Starovoitov, “Ob asimptotike approksimatsii Ermita–Pade vtorogo roda dlya eksponentsialnykh funktsii s kompleksnymi mnozhitelyami v pokazatelyakh eksponent”, PFMT, 2017, no. 1(30), 73–77
A. P. Starovoitov, “Asymptotics of Diagonal Hermite–Padé Polynomials for the Collection of Exponential Functions”, Math. Notes, 102:2 (2017), 277–288
V. G. Lysov, “Ob approksimatsiyakh Ermita–Pade dlya proizvedeniya dvukh logarifmov”, Preprinty IPM im. M. V. Keldysha, 2017, 141, 24 pp.
A. P. Starovoitov, E. P. Kechko, “Upper Bounds for the Moduli of Zeros of Hermite–Padé Approximations for a Set of Exponential Functions”, Math. Notes, 99:3 (2016), 417–425
A. V. Astafieva, A. P. Starovoitov, “Hermite-Padé approximation of exponential functions”, Sb. Math., 207:6 (2016), 769–791
A. P. Starovoitov, G. N. Kazimirov, M. V. Sidortsov, “Asimptotika approksimatsii Ermita–Pade eksponentsialnykh funktsii s kompleksnymi mnozhitelyami v pokazatelyakh eksponent”, PFMT, 2016, no. 2(27), 61–67
A. P. Starovoitov, E. P. Kechko, “O lokalizatsii nulei approksimatsii Ermita–Pade eksponentsialnykh funktsii”, PFMT, 2015, no. 3(24), 84–89
S. P. Suetin, “Distribution of the zeros of Padé polynomials and analytic continuation”, Russian Math. Surveys, 70:5 (2015), 901–951
A. P. Starovoitov, “On asymptotic form of the Hermite–Pade approximations for a system of Mittag-Leffler functions”, Russian Math. (Iz. VUZ), 58:9 (2014), 49–56
Khodabakhsh Hessami Pilehrood, Tatiana Hessami Pilehrood, “On q q -analogues of two-one formulas for multiple harmonic sums and multiple zeta star values”, Monatsh Math, 2014
Beckermann B., Kalyagin V., Matos A.C., Wielonsky F., “Equilibrium Problems for Vector Potentials with Semidefinite Interaction Matrices and Constrained Masses”, Constr. Approx., 37:1 (2013), 101–134
A. P. Starovoitov, “Approksimatsii Ermita–Pade dlya sistemy funktsii Mittag-Lefflera”, PFMT, 2013, no. 1(14), 81–87