Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2002, Volume 57, Issue 3, Pages 535–571
DOI: https://doi.org/10.1070/RM2002v057n03ABEH000512
(Mi rm512)
 

This article is cited in 23 scientific papers (total in 23 papers)

Cyclic graphs and Apéry's theorem

V. N. Sorokin

M. V. Lomonosov Moscow State University
References:
Abstract: This is a survey of results about the behaviour of Hermite–Padé approximants for graphs of Markov functions, and a survey of interpolation problems leading to Apéry's result about the irrationality of the value ζ(3) of the Riemann zeta function. The first example is given of a cyclic graph for which the Hermite–Padé problem leads to Apéry's theorem. Explicit formulae for solutions are obtained, namely, Rodrigues' formulae and integral representations. The asymptotic behaviour of the approximants is studied, and recurrence formulae are found.
Received: 15.03.2001
Bibliographic databases:
Document Type: Article
UDC: 517.53
MSC: Primary 11M06, 11J72, 41A21, 05C90; Secondary 11J82, 14G10
Language: English
Original paper language: Russian
Citation: V. N. Sorokin, “Cyclic graphs and Apéry's theorem”, Russian Math. Surveys, 57:3 (2002), 535–571
Citation in format AMSBIB
\Bibitem{Sor02}
\by V.~N.~Sorokin
\paper Cyclic graphs and Ap\'ery's theorem
\jour Russian Math. Surveys
\yr 2002
\vol 57
\issue 3
\pages 535--571
\mathnet{http://mi.mathnet.ru/eng/rm512}
\crossref{https://doi.org/10.1070/RM2002v057n03ABEH000512}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1918856}
\zmath{https://zbmath.org/?q=an:1047.11070}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2002RuMaS..57..535S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000178591700003}
\elib{https://elibrary.ru/item.asp?id=13401991}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036558633}
Linking options:
  • https://www.mathnet.ru/eng/rm512
  • https://doi.org/10.1070/RM2002v057n03ABEH000512
  • https://www.mathnet.ru/eng/rm/v57/i3/p99
  • This publication is cited in the following 23 articles:
    1. A. I. Aptekarev, A. V. Dyachenko, V. G. Lysov, “Meixner Multiply Orthogonal Polynomials on Interleaved Lattices”, Math. Notes, 115:4 (2024), 642–646  mathnet  crossref  crossref  mathscinet
    2. Alan Sokal, “Multiple orthogonal polynomials, 𝑑-orthogonal polynomials, production matrices, and branched continued fractions”, Trans. Amer. Math. Soc. Ser. B, 11:23 (2024), 762  crossref
    3. Alexander Aptekarev, Alexander Dyachenko, Vladimir Lysov, “On Perfectness of Systems of Weights Satisfying Pearson's Equation with Nonstandard Parameters”, Axioms, 12:1 (2023), 89  crossref
    4. V. G. Lysov, “Mnogourovnevye interpolyatsii dlya obobschennoi sistemy Nikishina na grafe-dereve”, Tr. MMO, 83, no. 2, MTsNMO, M., 2022, 345–361  mathnet
    5. A. P. Starovoitov, N. V. Ryabchenko, “O determinantnykh predstavleniyakh mnogochlenov Ermita–Pade”, Tr. MMO, 83, no. 1, MTsNMO, M., 2022, 17–35  mathnet
    6. Fischler S., Rivoal T., “Linear Independence of Values of G-Functions, II: Outside the Disk of Convergence”, Ann. Math. Que., 45:1 (2021), 53–93  crossref  mathscinet  isi
    7. V. G. Lysov, “O diofantovykh priblizheniyakh proizvedeniya logarifmov”, Preprinty IPM im. M. V. Keldysha, 2018, 158, 20 pp.  mathnet  crossref  elib
    8. Alexander Viktorovich Dyachenko, Vladimir Genrikhovich Lysov, “On polynomials of multiple discrete orthogonality on lattices with shift”, KIAM Prepr., 2018, no. 218, 1  crossref
    9. M. V. Sidortsov, N. A. Starovoitova, A. P. Starovoitov, “Ob asimptotike approksimatsii Ermita–Pade vtorogo roda dlya eksponentsialnykh funktsii s kompleksnymi mnozhitelyami v pokazatelyakh eksponent”, PFMT, 2017, no. 1(30), 73–77  mathnet
    10. A. P. Starovoitov, “Asymptotics of Diagonal Hermite–Padé Polynomials for the Collection of Exponential Functions”, Math. Notes, 102:2 (2017), 277–288  mathnet  crossref  crossref  mathscinet  isi  elib
    11. V. G. Lysov, “Ob approksimatsiyakh Ermita–Pade dlya proizvedeniya dvukh logarifmov”, Preprinty IPM im. M. V. Keldysha, 2017, 141, 24 pp.  mathnet  crossref
    12. A. P. Starovoitov, E. P. Kechko, “Upper Bounds for the Moduli of Zeros of Hermite–Padé Approximations for a Set of Exponential Functions”, Math. Notes, 99:3 (2016), 417–425  mathnet  crossref  crossref  mathscinet  isi  elib
    13. A. V. Astafieva, A. P. Starovoitov, “Hermite-Padé approximation of exponential functions”, Sb. Math., 207:6 (2016), 769–791  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    14. A. P. Starovoitov, G. N. Kazimirov, M. V. Sidortsov, “Asimptotika approksimatsii Ermita–Pade eksponentsialnykh funktsii s kompleksnymi mnozhitelyami v pokazatelyakh eksponent”, PFMT, 2016, no. 2(27), 61–67  mathnet
    15. A. P. Starovoitov, E. P. Kechko, “O lokalizatsii nulei approksimatsii Ermita–Pade eksponentsialnykh funktsii”, PFMT, 2015, no. 3(24), 84–89  mathnet
    16. S. P. Suetin, “Distribution of the zeros of Padé polynomials and analytic continuation”, Russian Math. Surveys, 70:5 (2015), 901–951  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    17. A. P. Starovoitov, “On asymptotic form of the Hermite–Pade approximations for a system of Mittag-Leffler functions”, Russian Math. (Iz. VUZ), 58:9 (2014), 49–56  mathnet  crossref
    18. Khodabakhsh Hessami Pilehrood, Tatiana Hessami Pilehrood, “On
      q
      q -analogues of two-one formulas for multiple harmonic sums and multiple zeta star values”, Monatsh Math, 2014  crossref  mathscinet  isi  scopus
    19. Beckermann B., Kalyagin V., Matos A.C., Wielonsky F., “Equilibrium Problems for Vector Potentials with Semidefinite Interaction Matrices and Constrained Masses”, Constr. Approx., 37:1 (2013), 101–134  crossref  mathscinet  zmath  isi  scopus  scopus
    20. A. P. Starovoitov, “Approksimatsii Ermita–Pade dlya sistemy funktsii Mittag-Lefflera”, PFMT, 2013, no. 1(14), 81–87  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:972
    Russian version PDF:346
    English version PDF:27
    References:66
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025