|
Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics), 2017, Issue 1(30), Pages 73–77
(Mi pfmt491)
|
|
|
|
MATHEMATICS
Asymptotics of the type II Hermite–Padé approximation of exponential functions with complex multipliers in the exponent
M. V. Sidortsov, N. A. Starovoitova, A. P. Starovoitov F. Sсorina Gomel State University
Abstract:
The asymptotic behavior of diagonal Hermite–Padé polynomials and diagonal Hermite–Padé approximations of type II for the system of exponentials $\{e^{\lambda_pz}\}_{p=0}^k$ in which $\lambda_0=0$, while the rest $\lambda_p$ are the roots of the equation $\xi^k=1$ is determined. The theorems complement known results of H. Padé, D. Braess, A. I. Aptekarev, H. Stahl, F. Wielonsky, W. Van Assche, A. B. J. Kuijlaars, A. P. Starovoitov, obtained for the case, where the $\{\lambda_p\}_{p=0}^k$ — different real numbers.
Keywords:
Hermite integrals, Hermite–Padé polynomials, Hermite–Padé approximations, asymptotic equality.
Received: 01.12.2016
Citation:
M. V. Sidortsov, N. A. Starovoitova, A. P. Starovoitov, “Asymptotics of the type II Hermite–Padé approximation of exponential functions with complex multipliers in the exponent”, PFMT, 2017, no. 1(30), 73–77
Linking options:
https://www.mathnet.ru/eng/pfmt491 https://www.mathnet.ru/eng/pfmt/y2017/i1/p73
|
Statistics & downloads: |
Abstract page: | 189 | Full-text PDF : | 47 | References: | 50 |
|