Abstract:
In the paper we give a survey of results concerning the problems of representing functions by series in various systems, and of the uniqueness of such a representation. The account covers older results as well as those of recent years due to several authors. Much attention is also paid to questions of the validity of the Weierstrass theorem and of representing functions in the classes φ(L).
\Bibitem{Uly72}
\by P.~L.~Ul'yanov
\paper Representation of functions by series and classes~$\varphi(L)$
\jour Russian Math. Surveys
\yr 1972
\vol 27
\issue 2
\pages 1--54
\mathnet{http://mi.mathnet.ru/eng/rm5028}
\crossref{https://doi.org/10.1070/RM1972v027n02ABEH001370}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=399749}
\zmath{https://zbmath.org/?q=an:0274.46027}
Linking options:
https://www.mathnet.ru/eng/rm5028
https://doi.org/10.1070/RM1972v027n02ABEH001370
https://www.mathnet.ru/eng/rm/v27/i2/p3
This publication is cited in the following 47 articles:
M. G. Grigoryan, “On universal (in the sense of signs) Fourier series with respect to the Walsh system”, Sb. Math., 215:6 (2024), 717–742
Sergey V. Astashkin, Pavel A. Terekhin, “Sequences of dilations and translations equivalent to the Haar system in Lp-spaces”, Journal of Approximation Theory, 274 (2022), 105672
M. G. Grigoryan, “Ob universalnykh ryadakh Fure—Uolsha”, Materialy 20 Mezhdunarodnoi Saratovskoi zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya», Saratov, 28 yanvarya — 1 fevralya 2020 g. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 200, VINITI RAN, M., 2021, 45–57
John J. Benedetto, Franck Olivier Ndjakou Njeunje, “Haar approximation from within for Lp(Rd), 0<p<1”, Sampl. Theory Signal Process. Data Anal., 19:1 (2021)
M. G. Grigoryan, “Functions with universal Fourier-Walsh series”, Sb. Math., 211:6 (2020), 850–874
M. G. Grigoryan, “Functions Universal with Respect to the Walsh System”, J. Contemp. Mathemat. Anal., 55:6 (2020), 376
A. A. Sargsyan, “On Faber–Schauder coefficients of continuous functions and divergence of greedy algorighms”, Russian Math. (Iz. VUZ), 63:5 (2019), 57–62
V. I. Filippov, “On generalization of Haar system and other function systems in spaces Eφ”, Russian Math. (Iz. VUZ), 62:1 (2018), 76–81
M. G. Grigoryan, A. A. Sargsyan, “The structure of universal functions for Lp-spaces, p∈(0,1)”, Sb. Math., 209:1 (2018), 35–55
A. A. Sargsyan, “Quasiuniversal Fourier–Walsh Series for the Classes Lp[0,1], p>1”, Math. Notes, 104:2 (2018), 278–292
M. G. Grigoryan, A. A. Sargsyan, “The Fourier–Faber–Schauder series unconditionally divergent in measure”, Siberian Math. J., 59:5 (2018), 835–842
M. G. Grigoryan, A. A. Sargsyan, “On existence of a universal function for Lp[0,1] with p∈(0,1)”, Siberian Math. J., 57:5 (2016), 796–808
M. R. Gabdullin, “On the divergence of trigonometric Fourier series in classes φ(L) contained in L”, Proc. Steklov Inst. Math. (Suppl.), 297, suppl. 1 (2017), 81–87
V. G. Krotov, “Criteria for compactness in Lp-spaces, p⩾0”, Sb. Math., 203:7 (2012), 1045–1064
V. I. Filippov, “On the Kolmogorov theorems on Fourier series and conjugate functions”, Russian Math. (Iz. VUZ), 56:7 (2012), 18–29
V. I. Filippov, “Representation systems obtained using translates and dilates of a single function in multidimensional spaces Eφ”, Izv. Math., 76:6 (2012), 1257–1270
Filippov V.I., “Skhodimost ryadov fure v klassakh neintegriruemykh funktsii”, Nauka i obschestvo, 2011, no. 1, 39–42
Filippov V.I., “Sistemy szhatii i sdvigov odnoi funktsii v mnogomernykh prostranstvakh e”, Vestnik saratovskogo gosudarstvennogo sotsialno-ekonomicheskogo universiteta, 2011, no. 1, 120–122
The systems of translates and dilates of one function in the multivariable spaces
N. Temirgaliev, S. S. Kudaibergenov, A. A. Shomanova, “Applications of Smolyak quadrature formulas to the numerical integration of Fourier coefficients and in function recovery problems”, Russian Math. (Iz. VUZ), 54:3 (2010), 45–62
P. A. Terekhin, “Frames in Banach Spaces”, Funct. Anal. Appl., 44:3 (2010), 199–208