Loading [MathJax]/jax/output/SVG/config.js
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2005, Volume 60, Issue 3, Pages 489–557
DOI: https://doi.org/10.1070/RM2005v060n03ABEH000849
(Mi rm1430)
 

This article is cited in 15 scientific papers (total in 15 papers)

Almost periodic functions and representations in locally convex spaces

A. I. Shtern

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: Properties of diverse classes of almost periodic functions with values in locally convex spaces and of almost periodic representations on locally convex spaces are considered. The well-known criterion for the almost periodicity of weakly almost periodic group representations on Banach spaces (in terms of scalar almost periodicity) is extended to the case of weakly continuous weakly almost periodic representations on barrelled spaces in which the weakly closed convex hulls of weakly compact sets are weakly compact. Applications of this result are indicated and a survey of the current state of some other classical problems in the theory of almost periodic functions (as applied to almost periodic functions with values in locally convex spaces) and modern directions of investigation related to almost periodic functions on groups and finite-dimensional unitary representations of groups are presented. In particular, decomposition problems for weakly almost periodic representations and characterizations of diverse classes of almost periodic functions (including criteria for almost periodicity), existence problems for the mean value, countability conditions for the spectrum of a scalarly almost periodic function, theorems on the integral and the differences of almost periodic functions, and other relationships among strong, scalar, and weak almost periodicity for functions with values in locally convex spaces are treated.
Received: 18.08.2004
Bibliographic databases:
Document Type: Article
UDC: 517.986.63+517.986.4
MSC: Primary 43A60, 22A25; Secondary 42A75, 43A07, 22A20, 46A32, 47D03, 46A08, 22D10, 3
Language: English
Original paper language: Russian
Citation: A. I. Shtern, “Almost periodic functions and representations in locally convex spaces”, Russian Math. Surveys, 60:3 (2005), 489–557
Citation in format AMSBIB
\Bibitem{Sht05}
\by A.~I.~Shtern
\paper Almost periodic functions and representations in locally convex spaces
\jour Russian Math. Surveys
\yr 2005
\vol 60
\issue 3
\pages 489--557
\mathnet{http://mi.mathnet.ru/eng/rm1430}
\crossref{https://doi.org/10.1070/RM2005v060n03ABEH000849}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2167813}
\zmath{https://zbmath.org/?q=an:1119.43005}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005RuMaS..60..489S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000232718500003}
\elib{https://elibrary.ru/item.asp?id=25787192}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-27844475111}
Linking options:
  • https://www.mathnet.ru/eng/rm1430
  • https://doi.org/10.1070/RM2005v060n03ABEH000849
  • https://www.mathnet.ru/eng/rm/v60/i3/p97
  • This publication is cited in the following 15 articles:
    1. Alan Chávez, Kamal Khalil, Marko Kostić, Manuel Pinto, “Almost periodic type functions of several variables and applications”, Journal of Mathematical Analysis and Applications, 525:1 (2023), 127115  crossref
    2. Junghenn H.D., “Scalarly Weakly Almost Periodic Distal Representations Are Strongly Almost Periodic”, Proc. Amer. Math. Soc., 149:3 (2021), 953–960  crossref  mathscinet  isi
    3. Junghenn H.D., “Amenability of Representations and Invariant Hahn-Banach Theorems”, J. Anal., 28:4 (2020), 931–949  crossref  mathscinet  isi
    4. A. G. Baskakov, V. E. Strukov, I. I. Strukova, “Harmonic analysis of functions in homogeneous spaces and harmonic distributions that are periodic or almost periodic at infinity”, Sb. Math., 210:10 (2019), 1380–1427  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. Kostic M., “Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations”, Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations, Walter de Gruyter Gmbh, 2019, 1–329  mathscinet  isi
    6. Shtern I A., “Continuity Conditions For Finite-Dimensional Locally Bounded Representations of Connected Locally Compact Groups”, Russ. J. Math. Phys., 25:3 (2018), 345–382  crossref  mathscinet  zmath  isi  scopus
    7. I. A. Trishina, “Pochti periodicheskie na beskonechnosti funktsii otnositelno podprostranstva integralno ubyvayuschikh na beskonechnosti funktsii”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 17:4 (2017), 402–418  mathnet  crossref  elib
    8. Functional Differential Equations, 2016, 307  crossref
    9. Eli Glasner, Michael Megrelishvili, Recent Progress in General Topology III, 2014, 399  crossref
    10. Khadjiev D., Cavus A., “Continuous Invariant Averagings”, Turk. J. Math., 37:5 (2013), 770–780  crossref  mathscinet  zmath  isi  elib
    11. M. I. Karakhanian, “Almost periodicity in spectral analysis representations induced by generalized shift operation”, Uch. zapiski EGU, ser. Fizika i Matematika, 2012, no. 3, 9–13  mathnet
    12. A. I. Shtern, “The structure of homomorphisms of connected locally compact groups into compact groups”, Izv. Math., 75:6 (2011), 1279–1304  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    13. A. I. Shtern, “Duality between compactness and discreteness beyond Pontryagin duality”, Proc. Steklov Inst. Math., 271 (2010), 212–227  mathnet  crossref  mathscinet  isi  elib
    14. A. I. Shtern, “Finite-dimensional quasirepresentations of connected Lie groups and Mishchenko's conjecture”, J. Math. Sci., 159:5 (2009), 653–751  mathnet  crossref  mathscinet  zmath  elib  elib
    15. A. I. Shtern, “Kazhdan–Milman problem for semisimple compact Lie groups”, Russian Math. Surveys, 62:1 (2007), 113–174  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1069
    Russian version PDF:506
    English version PDF:61
    References:104
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025