Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2007, Volume 62, Issue 1, Pages 113–174
DOI: https://doi.org/10.1070/RM2007v062n01ABEH004382
(Mi rm2696)
 

This article is cited in 11 scientific papers (total in 11 papers)

Kazhdan–Milman problem for semisimple compact Lie groups

A. I. Shtern

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Received: 20.12.2005
Revised: 19.06.2006
Bibliographic databases:
Document Type: Article
UDC: 517.986.6
MSC: Primary 22D05; Secondary 22D10, 22D12, 22D15, 22D20, 22D25, 22E41, 22E46, 4
Language: English
Original paper language: Russian
Citation: A. I. Shtern, “Kazhdan–Milman problem for semisimple compact Lie groups”, Russian Math. Surveys, 62:1 (2007), 113–174
Citation in format AMSBIB
\Bibitem{Sht07}
\by A.~I.~Shtern
\paper Kazhdan--Milman problem for semisimple compact Lie groups
\jour Russian Math. Surveys
\yr 2007
\vol 62
\issue 1
\pages 113--174
\mathnet{http://mi.mathnet.ru/eng/rm2696}
\crossref{https://doi.org/10.1070/RM2007v062n01ABEH004382}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2352414}
\zmath{https://zbmath.org/?q=an:1179.22005}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007RuMaS..62..113S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000247727000003}
\elib{https://elibrary.ru/item.asp?id=25787363}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34547254775}
Linking options:
  • https://www.mathnet.ru/eng/rm2696
  • https://doi.org/10.1070/RM2007v062n01ABEH004382
  • https://www.mathnet.ru/eng/rm/v62/i1/p123
  • This publication is cited in the following 11 articles:
    1. Shtern A.I., “Irreducible Locally Bounded Finite-Dimensional Pseudorepresentations of Connected Locally Compact Groups Revisited”, Russ. J. Math. Phys., 27:3 (2020), 382–384  crossref  mathscinet  isi
    2. Shtern A.I., “A New Triviality Theorem For Group Pseudorepresentations”, Russ. J. Math. Phys., 27:4 (2020), 535–536  crossref  mathscinet  isi
    3. Shtern I A., “Connected Lie Groups Admitting An Embedding in a Connected Amenable Lie Group”, Russ. J. Math. Phys., 26:4 (2019), 499–500  crossref  mathscinet  isi
    4. Shtern A.I., “Irreducible Locally Bounded Finite-Dimensional Pseudorepresentations of Connected Locally Compact Groups”, Russ. J. Math. Phys., 25:2 (2018), 239–240  crossref  mathscinet  isi  scopus
    5. Shtern I A., “Continuity Conditions For Finite-Dimensional Locally Bounded Representations of Connected Locally Compact Groups”, Russ. J. Math. Phys., 25:3 (2018), 345–382  crossref  mathscinet  zmath  isi  scopus
    6. A. I. Shtern, “Locally bounded finally precontinuous finite-dimensional quasirepresentations of connected locally compact groups”, Sb. Math., 208:10 (2017), 1557–1576  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. Shtern A.I., “Quasirepresentations of Amenable Groups: Results, Errors, and Hopes”, Russ. J. Math. Phys., 20:2 (2013), 239–253  crossref  mathscinet  zmath  isi  elib  scopus
    8. Shtern A.I., “Structure of finite-dimensional locally bounded finally precontinuous quasirepresentations of locally compact groups”, Russ. J. Math. Phys., 16:1 (2009), 133–138  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    9. A. I. Shtern, “A version of van der Waerden's theorem and a proof of Mishchenko's conjecture on homomorphisms of locally compact groups”, Izv. Math., 72:1 (2008), 169–205  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    10. A. I. Shtern, “Finite-dimensional quasirepresentations of connected Lie groups and Mishchenko's conjecture”, J. Math. Sci., 159:5 (2009), 653–751  mathnet  crossref  mathscinet  zmath  elib  elib
    11. Shtern A.I., “Quasisymmetry. II”, Russ. J. Math. Phys., 14:3 (2007), 332–356  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1044
    Russian version PDF:415
    English version PDF:44
    References:118
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025