Аннотация:
За последние 25–30 лет в теории отображений, близких к представлениям, – почти представлений, аппроксимативных представлений, квазипредставлений, псевдопредставлений и т. д. – накоплен большой материал и созданы технические приемы, имеющие нетривиальные приложения в алгебре и топологии, – от ограниченных когомологий до финслеровых метрик и инварианта Калаби в симплектической геометрии. В обзоре основные понятия и факты теории излагаются в связи с приводимым в данной работе доказательством “теоремы тривиальности” для конечномерных квазипредставлений компактных групп Ли: любое (не обязательно непрерывное) конечномерное унитарное квазипредставление с малым дефектом полупростой компактной группы Ли близко к обычному (непрерывному) представлению этой группы. Эта теорема, дающая полный ответ на вопрос Каждана–Мильмана 1982 г., является и частичным ответом на вопрос Громова 1995 г., а именно, хотя полупростая компактная группа в дискретной топологии не аменабельна, но все ее конечномерные унитарные квазипредставления являются возмущениями обычных представлений. Кроме того, указаны необходимые и достаточные условия справедливости аналога теоремы Ван дер Вардена (т.е. условия автоматической непрерывности всех локально ограниченных конечномерных представлений) для данной связной группы Ли и дано описание структуры всех конечномерных локально ограниченных квазипредставлений произвольных связных полупростых групп Ли. Обсуждаются и результаты, связанные с некоторыми другими направлениями исследований по теории отображений групп и алгебр, близких к представлениям, и их приложениями к геометрии и теории групп.
Библиография: 225 названий.
Поступила в редакцию: 20.12.2005 Исправленный вариант: 19.06.2006
Shtern A.I., “Irreducible Locally Bounded Finite-Dimensional Pseudorepresentations of Connected Locally Compact Groups Revisited”, Russ. J. Math. Phys., 27:3 (2020), 382–384
Shtern A.I., “A New Triviality Theorem For Group Pseudorepresentations”, Russ. J. Math. Phys., 27:4 (2020), 535–536
Shtern I A., “Connected Lie Groups Admitting An Embedding in a Connected Amenable Lie Group”, Russ. J. Math. Phys., 26:4 (2019), 499–500
Shtern A.I., “Irreducible Locally Bounded Finite-Dimensional Pseudorepresentations of Connected Locally Compact Groups”, Russ. J. Math. Phys., 25:2 (2018), 239–240
Shtern I A., “Continuity Conditions For Finite-Dimensional Locally Bounded Representations of Connected Locally Compact Groups”, Russ. J. Math. Phys., 25:3 (2018), 345–382
А. И. Штерн, “Локально ограниченные финально преднепрерывные конечномерные квазипредставления связных локально компактных групп”, Матем. сб., 208:10 (2017), 149–170; A. I. Shtern, “Locally bounded finally precontinuous finite-dimensional quasirepresentations of connected locally compact groups”, Sb. Math., 208:10 (2017), 1557–1576
Shtern A.I., “Quasirepresentations of Amenable Groups: Results, Errors, and Hopes”, Russ. J. Math. Phys., 20:2 (2013), 239–253
Shtern A.I., “Structure of finite-dimensional locally bounded finally precontinuous quasirepresentations of locally compact groups”, Russ. J. Math. Phys., 16:1 (2009), 133–138
А. И. Штерн, “Вариант теоремы Ван дер Вардена и доказательство гипотезы Мищенко
для гомоморфизмов локально компактных групп”, Изв. РАН. Сер. матем., 72:1 (2008), 183–224; A. I. Shtern, “A version of van der Waerden's theorem and a proof of Mishchenko's
conjecture on homomorphisms of locally compact groups”, Izv. Math., 72:1 (2008), 169–205
А. И. Штерн, “Конечномерные квазипредставления связных групп Ли и гипотеза Мищенко”, Фундамент. и прикл. матем., 13:7 (2007), 85–225; A. I. Shtern, “Finite-dimensional quasirepresentations of connected Lie groups and Mishchenko's conjecture”, J. Math. Sci., 159:5 (2009), 653–751