Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2015, Volume 20, Issue 4, Pages 401–427
DOI: https://doi.org/10.1134/S1560354715040012
(Mi rcd3)
 

This article is cited in 20 scientific papers (total in 20 papers)

The Dynamics of Systems with Servoconstraints. II

Valery V. Kozlov

Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
Citations (20)
References:
Abstract: This paper addresses the dynamics of systems with servoconstraints where the constraints are realized by controlling the inertial properties of the system. Vakonomic systems are a particular case. Special attention is given to the motion on Lie groups with left-invariant kinetic energy and a left-invariant constraint. The presence of symmetries allows the dynamical equations to be reduced to a closed system of differential equations with quadratic right-hand sides. As the main example, we consider the rotation of a rigid body with a left-invariant servoconstraint, which implies that the projection of the body’s angular velocity on some body-fixed direction is zero.
Keywords: servoconstraints, symmetries, Lie groups, left-invariant constraints, systems with quadratic right-hand sides, vakonomic systems.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work was supported by the grant of the Russian Scientific Foundation (project 14-50-00005).
Received: 14.05.2015
Accepted: 01.07.2015
Bibliographic databases:
Document Type: Article
MSC: 70E18, 34C40
Language: English
Citation: Valery V. Kozlov, “The Dynamics of Systems with Servoconstraints. II”, Regul. Chaotic Dyn., 20:4 (2015), 401–427
Citation in format AMSBIB
\Bibitem{Koz15}
\by Valery V. Kozlov
\paper The Dynamics of Systems with Servoconstraints. II
\jour Regul. Chaotic Dyn.
\yr 2015
\vol 20
\issue 4
\pages 401--427
\mathnet{http://mi.mathnet.ru/rcd3}
\crossref{https://doi.org/10.1134/S1560354715040012}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3376598}
\zmath{https://zbmath.org/?q=an:06507832}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015RCD....20..401K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000358990500001}
\elib{https://elibrary.ru/item.asp?id=23996103}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84938589237}
Linking options:
  • https://www.mathnet.ru/eng/rcd3
  • https://www.mathnet.ru/eng/rcd/v20/i4/p401
    Cycle of papers Translation
    Related presentations:
    This publication is cited in the following 20 articles:
    1. Kahramanjon Khusanov, 6TH INTERNATIONAL CONFERENCE FOR PHYSICS AND ADVANCE COMPUTATION SCIENCES: ICPAS2024, 3282, 6TH INTERNATIONAL CONFERENCE FOR PHYSICS AND ADVANCE COMPUTATION SCIENCES: ICPAS2024, 2025, 070014  crossref
    2. Anvar Djurayev, Kozimjon Yuldashev, Temurbek Nizomov, 6TH INTERNATIONAL CONFERENCE FOR PHYSICS AND ADVANCE COMPUTATION SCIENCES: ICPAS2024, 3282, 6TH INTERNATIONAL CONFERENCE FOR PHYSICS AND ADVANCE COMPUTATION SCIENCES: ICPAS2024, 2025, 070016  crossref
    3. E. A. Mikishanina, “Printsipy realizatsii servosvyazei v negolonomnykh mekhanicheskikh sistemakh”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2024, no. 89, 103–118  mathnet  crossref
    4. K. Khusanov, THE THIRD INTERNATIONAL SCIENTIFIC CONFERENCE CONSTRUCTION MECHANICS, HYDRAULICS AND WATER RESOURCES ENGINEERING (CONMECHYDRO 2021 AS), 2612, THE THIRD INTERNATIONAL SCIENTIFIC CONFERENCE CONSTRUCTION MECHANICS, HYDRAULICS AND WATER RESOURCES ENGINEERING (CONMECHYDRO 2021 AS), 2023, 050037  crossref
    5. G. K. Tolokonnikov, Lecture Notes on Data Engineering and Communications Technologies, 158, Advances in Intelligent Systems, Computer Science and Digital Economics IV, 2023, 126  crossref
    6. Jiaming Xiong, Ruihan Yu, Caishan Liu, “Steering control and stability analysis for an autonomous bicycle: part I—theoretical framework and simulations”, Nonlinear Dyn, 111:18 (2023), 16705  crossref
    7. E. A. Mikishanina, “Motion Control of a Spherical Robot with a Pendulum Actuator for Pursuing a Target”, Rus. J. Nonlin. Dyn., 18:5 (2022), 899–913  mathnet  crossref  mathscinet
    8. E. A. Mikishanina, “Rolling motion dynamics of a spherical robot with a pendulum actuator controlled by the Bilimovich servo-constraint”, Theoret. and Math. Phys., 211:2 (2022), 679–691  mathnet  mathnet  crossref  crossref  scopus
    9. Briskin E.S., Pavlovsky V.V., Pavlovsky V.E., Smirnaya L.D., “Formation of the Motion Properties of Mechanical Systems By Controlling the Reactions of Holonomic Quasi-Ideal Constraints”, J. Comput. Syst. Sci. Int., 60:6 (2021), 853–863  crossref  mathscinet  isi  scopus
    10. Kahramanjon Khusanov, D. Bazarov, “Selecting Control Parameters of Mechanical Systems with Servoconstraints”, E3S Web Conf., 264 (2021), 04085  crossref
    11. K Khusanov, “Stabilization of mechanical systems with nonholonomic servoconstraints”, IOP Conf. Ser.: Mater. Sci. Eng., 883:1 (2020), 012164  crossref
    12. I. A. Bizyaev, V A. Borisov, V. V. Kozlov, I. S. Mamaev, “Fermi-like acceleration and power-law energy growth in nonholonomic systems”, Nonlinearity, 32:9 (2019), 3209–3233  crossref  mathscinet  zmath  isi  scopus
    13. R. G. Mukharlyamov, “Control of the dynamics of a system with differential constraints”, J. Comput. Syst. Sci. Int., 58:4 (2019), 515–527  crossref  crossref  zmath  isi  elib  scopus
    14. B. I. Adamov, “A Study of the Controlled Motion of a Four-wheeled Mecanum Platform”, Nelin. Dinam., 14:2 (2018), 265–290  mathnet  crossref  elib
    15. R. G. Mukharlyamov, “Modelling of dynamics of mechanical systems with regard for constraint stabilization”, Fundamental and Applied Problems of Mechanics-2017, IOP Conference Series-Materials Science and Engineering, 468, IOP Publishing Ltd, 2018, 012041  crossref  isi  scopus
    16. A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Dynamical systems with non-integrable constraints, vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics”, Russian Math. Surveys, 72:5 (2017), 783–840  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    17. H. Kang, C. Liu, Ya.-B. Jia, “Inverse dynamics and energy optimal trajectories for a wheeled mobile robot”, Int. J. Mech. Sci., 134 (2017), 576–588  crossref  isi  scopus
    18. V. P. Pavlov, V. M. Sergeev, “Fluid dynamics and thermodynamics as a unified field theory”, Proc. Steklov Inst. Math., 294 (2016), 222–232  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    19. A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Istoriko-kriticheskii obzor razvitiya negolonomnoi mekhaniki: klassicheskii period”, Nelineinaya dinam., 12:3 (2016), 385–411  mathnet  crossref  zmath  elib
    20. Alexey V. Borisov, Ivan S. Mamaev, Ivan A. Bizyaev, “Historical and Critical Review of the Development of Nonholonomic Mechanics: the Classical Period”, Regul. Chaotic Dyn., 21:4 (2016), 455–476  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:479
    References:91
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025