Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2015, Volume 20, Issue 3, Pages 205–224
DOI: https://doi.org/10.1134/S1560354715030016
(Mi rcd1)
 

This article is cited in 30 scientific papers (total in 30 papers)

The Dynamics of Systems with Servoconstraints. I

Valery V. Kozlov

Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991, Russia
Citations (30)
References:
Abstract: The paper discusses the dynamics of systems with Béghin's servoconstraints where the constraints are realized by means of controlled forces. Classical nonholonomic systems are an important particular case. Special attention is given to the study of motion on Lie groups with left-invariant kinetic energy and left-invariant constraints. The presence of symmetries allows one to reduce the dynamic equations to a closed system of differential equations with quadratic right-hand sides on a Lie algebra. Examples are given which include the rotation of a rigid body with a left-invariant servoconstraint — the projection of the angular velocity onto some direction fixed in the body is equal to zero (a generalization of the nonholonomic Suslov problem) — and the motion of the Chaplygin sleigh with servoconstraints of a certain type. The dynamics of systems with Béghin's servoconstraints is richer and more varied than the more usual dynamics of nonholonomic systems.
Keywords: servoconstraints, symmetries, Lie groups, left-invariant constraints, systems with quadratic right-hand sides.
Funding agency Grant number
Russian Science Foundation 14-50-00005
The study was financed by the grant from the Russian Science Foundation (Project No. 14-5000005).
Received: 10.02.2015
Accepted: 05.03.2015
Bibliographic databases:
Document Type: Article
MSC: 34D20, 70F25, 70Q05
Language: English
Citation: Valery V. Kozlov, “The Dynamics of Systems with Servoconstraints. I”, Regul. Chaotic Dyn., 20:3 (2015), 205–224
Citation in format AMSBIB
\Bibitem{Koz15}
\by Valery V. Kozlov
\paper The Dynamics of Systems with Servoconstraints. I
\jour Regul. Chaotic Dyn.
\yr 2015
\vol 20
\issue 3
\pages 205--224
\mathnet{http://mi.mathnet.ru/rcd1}
\crossref{https://doi.org/10.1134/S1560354715030016}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3357272}
\zmath{https://zbmath.org/?q=an:06488653}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015RCD....20..205K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000356354200001}
\elib{https://elibrary.ru/item.asp?id=23984679}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84934930966}
Linking options:
  • https://www.mathnet.ru/eng/rcd1
  • https://www.mathnet.ru/eng/rcd/v20/i3/p205
    Cycle of papers Translation
    Related presentations:
    This publication is cited in the following 30 articles:
    1. E. A. Mikishanina, P. S. Platonov, “Control of a Wheeled Robot on a Plane with Obstacles”, Mehatronika, avtomatizaciâ, upravlenie, 25:2 (2024), 93  crossref
    2. Sergej Čelikovský, Milan Anderle, “Feedback equivalence of the chained mechanical system to the almost linear form and its use for the sustainable multi-step walking design”, Journal of the Franklin Institute, 2024, 107086  crossref
    3. E. A. Mikishanina, “Two Ways to Control a Pendulum-Type Spherical Robot on a Moving Platform in a Pursuit Problem”, Mech. Solids, 59:1 (2024), 127  crossref
    4. E. A. Mikishanina, “Control of a Spherical Robot with a Nonholonomic Omniwheel Hinge Inside”, Rus. J. Nonlin. Dyn., 20:1 (2024), 179–193  mathnet  crossref
    5. E. A. Mikishanina, “Two Ways to Control a Pendulum-Type Spherical Robot on a Moving Platform in a Pursuit Problem”, Izvestiâ Rossijskoj akademii nauk. Mehanika tverdogo tela, 2024, no. 1, 230  crossref
    6. E. A. Mikishanina, “Omnikolesnaya realizatsiya zadachi Suslova s reonomnoi svyazyu: dinamicheskaya model i upravlenie”, Vestnik rossiiskikh universitetov. Matematika, 29:147 (2024), 296–308  mathnet  crossref
    7. E. A. Mikishanina, “Printsipy realizatsii servosvyazei v negolonomnykh mekhanicheskikh sistemakh”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2024, no. 89, 103–118  mathnet  crossref
    8. G. K. Tolokonnikov, Lecture Notes on Data Engineering and Communications Technologies, 158, Advances in Intelligent Systems, Computer Science and Digital Economics IV, 2023, 126  crossref
    9. Chuan Min, Yongjun Pan, Wei Dai, Ibna Kawsar, Zhixiong Li, Gengxiang Wang, “Trajectory optimization of an electric vehicle with minimum energy consumption using inverse dynamics model and servo constraints”, Mechanism and Machine Theory, 181 (2023), 105185  crossref
    10. Jiaming Xiong, Ruihan Yu, Caishan Liu, “Steering control and stability analysis for an autonomous bicycle: part I—theoretical framework and simulations”, Nonlinear Dyn, 111:18 (2023), 16705  crossref
    11. E. A. Mikishanina, “Motion Control of a Spherical Robot with a Pendulum Actuator for Pursuing a Target”, Rus. J. Nonlin. Dyn., 18:5 (2022), 899–913  mathnet  crossref  mathscinet
    12. E. A. Mikishanina, “Rolling motion dynamics of a spherical robot with a pendulum actuator controlled by the Bilimovich servo-constraint”, Theoret. and Math. Phys., 211:2 (2022), 679–691  mathnet  mathnet  crossref  crossref  scopus
    13. I. A. Bizyaev, V A. Borisov, V. V. Kozlov, I. S. Mamaev, “Fermi-like acceleration and power-law energy growth in nonholonomic systems”, Nonlinearity, 32:9 (2019), 3209–3233  crossref  mathscinet  zmath  isi  scopus
    14. R. G. Mukharlyamov, “Control of the dynamics of a system with differential constraints”, J. Comput. Syst. Sci. Int., 58:4 (2019), 515–527  crossref  crossref  zmath  isi  elib  scopus
    15. Sergej Celikovsky, Milan Anderle, 2019 IEEE 15th International Conference on Control and Automation (ICCA), 2019, 1289  crossref
    16. B. I. Adamov, “A Study of the Controlled Motion of a Four-wheeled Mecanum Platform”, Nelin. Dinam., 14:2 (2018), 265–290  mathnet  crossref  elib
    17. R. G. Mukharlyamov, “Modelling of dynamics of mechanical systems with regard for constraint stabilization”, Fundamental and Applied Problems of Mechanics-2017, IOP Conference Series-Materials Science and Engineering, 468, IOP Publishing Ltd, 2018, 012041  crossref  isi  scopus
    18. Sergej Čelikovský, Milan Anderle, “Stable walking gaits for a three-link planar biped robot with two actuators based on the collocated virtual holonomic constraints and the cyclic unactuated variable”, IFAC-PapersOnLine, 51:22 (2018), 378  crossref
    19. Sergej Čelikovský, Milan Anderle, Lecture Notes in Electrical Engineering, 465, AETA 2017 - Recent Advances in Electrical Engineering and Related Sciences: Theory and Application, 2018, 554  crossref
    20. A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Dynamical systems with non-integrable constraints, vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics”, Russian Math. Surveys, 72:5 (2017), 783–840  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:460
    References:82
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025