Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2015, Volume 97, Issue 2, Pages 262–276
DOI: https://doi.org/10.4213/mzm9286
(Mi mzm9286)
 

This article is cited in 27 scientific papers (total in 27 papers)

The Dirichlet Problem for Higher-Order Partial Differential Equations

K. B. Sabitovab

a Novosibirsk State University
b Institute of Applied Research, Sterlitamak
References:
Abstract: For higher-order partial differential equations in two or three variables, the Dirichlet problem in rectangular domains is studied. Small denominators hampering the convergence of series appear in the process of constructing the solution of the problem by the spectral decomposition method. A uniqueness criterion for the solution is established. In the two-dimensional case, estimates justifying the existence of a solution of the Dirichlet problem are obtained. In the three-dimensional case where the domain is a cube, it is shown that the uniqueness of the solution of the Dirichlet problem is equivalent to the great Fermat problem.
Keywords: higher-order partial differential equation, Dirichlet problem, spectral decomposition method, Fourier series, Fermat problem.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-97003-р_поволжье_а
This work was supported by the Russian Foundation for Basic Research (r_Povolzh'e_a) (grant no. 14-01-97003).
Received: 30.11.2011
Revised: 26.06.2014
English version:
Mathematical Notes, 2015, Volume 97, Issue 2, Pages 255–267
DOI: https://doi.org/10.1134/S0001434615010277
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: K. B. Sabitov, “The Dirichlet Problem for Higher-Order Partial Differential Equations”, Mat. Zametki, 97:2 (2015), 262–276; Math. Notes, 97:2 (2015), 255–267
Citation in format AMSBIB
\Bibitem{Sab15}
\by K.~B.~Sabitov
\paper The Dirichlet Problem for Higher-Order Partial Differential Equations
\jour Mat. Zametki
\yr 2015
\vol 97
\issue 2
\pages 262--276
\mathnet{http://mi.mathnet.ru/mzm9286}
\crossref{https://doi.org/10.4213/mzm9286}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3370512}
\zmath{https://zbmath.org/?q=an:06459073}
\elib{https://elibrary.ru/item.asp?id=23421513}
\transl
\jour Math. Notes
\yr 2015
\vol 97
\issue 2
\pages 255--267
\crossref{https://doi.org/10.1134/S0001434615010277}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000350557000027}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84941636613}
Linking options:
  • https://www.mathnet.ru/eng/mzm9286
  • https://doi.org/10.4213/mzm9286
  • https://www.mathnet.ru/eng/mzm/v97/i2/p262
  • This publication is cited in the following 27 articles:
    1. A. K. Urinov, M. S. Azizov, “Initial-Boundary Value Problem for a Degenerate High Even-Order Partial Differential Equation with the Bessel Operator”, Lobachevskii J Math, 45:2 (2024), 864  crossref
    2. Muataz Almohamed, 2024 Intelligent Technologies and Electronic Devices in Vehicle and Road Transport Complex (TIRVED), 2024, 1  crossref
    3. A. K. Urinov, M. S. Azizov, “About an initial boundary problem for a degenerate higher even order partial differential equation”, J. Appl. Industr. Math., 17:2 (2023), 414–426  mathnet  crossref  crossref
    4. K. B. Sabitov, “Forward and inverse source reconstruction problems for the equations of vibrations of a rectangular plate”, Comput. Math. Math. Phys., 63:4 (2023), 582–595  mathnet  mathnet  crossref  crossref
    5. B. Yu. Irgashev, “On the Conditions for the Solvability of Boundary-Value Problems for Higher-Order Equations with Discontinuous Coefficients”, Math. Notes, 111:2 (2022), 217–229  mathnet  crossref  crossref  mathscinet  isi
    6. T. K. Yuldashev, “On a nonlocal boundary value problem for a partial integro-differential equations with degenerate kernel”, Vladikavk. matem. zhurn., 24:2 (2022), 130–141  mathnet  crossref  mathscinet
    7. A. K. Urinov, M. S. Azizov, “O razreshimosti nelokalnykh nachalno-granichnykh zadach dlya odnogo differentsialnogo uravneniya v chastnykh proizvodnykh vysokogo chetnogo poryadka”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 32:2 (2022), 240–255  mathnet  crossref  mathscinet
    8. D. Amanov, O. Sh. Kilichov, “Nonlocal Boundary Value Problem for a Fourth Order Differential Equation”, Lobachevskii J Math, 43:2 (2022), 293  crossref
    9. A. V. Glushak, “Uniqueness Criterion for the Solution of Boundary-Value Problems for the Abstract Euler–Poisson–Darboux Equation on a Finite Interval”, Math. Notes, 109:6 (2021), 867–875  mathnet  crossref  crossref  isi  elib
    10. N. V. Zaitseva, “Keldysh type problem with an integral condition for two-dimensional B-hyperbolic equation”, Moscow University Mathematics Bulletin, 76:5 (2021), 221–229  mathnet  crossref  mathscinet  zmath  isi
    11. Ya. O. Baranetskij, P. I. Kalenyuk, “Nonlocal Problem with Multipoint Perturbations of Dirichlet Conditions for Even-Order Partial Differential Equations with Constant Coefficients”, J Math Sci, 256:4 (2021), 375  crossref
    12. T. K. Yuldashev, F. D. Rakhmonov, “On a Benney–Luke Type Differential Equation with Nonlinear Boundary Value Conditions”, Lobachevskii J Math, 42:15 (2021), 3761  crossref
    13. A. H. Babayan, Springer Proceedings in Mathematics & Statistics, 357, Operator Theory and Harmonic Analysis, 2021, 55  crossref
    14. E. Providas, I. N. Parasidis, Springer Optimization and Its Applications, 179, Mathematical Analysis in Interdisciplinary Research, 2021, 641  crossref
    15. B. Yu. Irgashev, “On a boundary value problem for a high order mixed type equation”, Sib. elektron. matem. izv., 17 (2020), 899–912  mathnet  crossref
    16. K. B. Sabitov, “Inverse problems of determining the right-hand side and the initial conditions for the beam vibration equation”, Differ. Equ., 56:6 (2020), 761–774  crossref  mathscinet  isi
    17. A. Gimaltdinova, “The Dirichlet problem for an equation of mixed type with two internal lines of type change”, Lobachevskii J. Math., 41:11, SI (2020), 2155–2167  crossref  mathscinet  isi
    18. Ya. O. Baranetskij, P. І. Kalenyuk, M. І. Kopach, “Nonlocal Multipoint Problem for Partial Differential Equations of Even Order with Constant Coefficients”, J Math Sci, 249:3 (2020), 307  crossref
    19. Yu. K. Sabitova, “The Dirichlet problem for a hyperboli-type equation with power degeneracy in a rectangular domain”, Differ. Equ., 54:2 (2018), 228–238  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
    20. Yu. K. Sabitova, “Dirichlet problem for Lavrent'ev–Bitsadze equation with loaded summands”, Russian Math. (Iz. VUZ), 62:9 (2018), 35–51  mathnet  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:805
    Full-text PDF :347
    References:133
    First page:87
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025