Abstract:
For one degenerate differential equation in partial derivatives of high even order with operator The initial boundary value problem is formulated in the rectangle and the existence, uniqueness and stability of the solution of the problem under study are proved.
Keywords:
degenerate partial differential equation initial-boundary value problem, spectral problem, the existence, uniqueness and stability of the solution, the method of separation of variables.
.
Citation:
A. K. Urinov, M. S. Azizov, “About an initial boundary problem for a degenerate higher even order partial differential equation”, Sib. Zh. Ind. Mat., 26:2 (2023), 155–170; J. Appl. Industr. Math., 17:2 (2023), 414–426
\Bibitem{UriAzi23}
\by A.~K.~Urinov, M.~S.~Azizov
\paper About an initial boundary problem for a degenerate higher even order partial differential equation
\jour Sib. Zh. Ind. Mat.
\yr 2023
\vol 26
\issue 2
\pages 155--170
\mathnet{http://mi.mathnet.ru/sjim1238}
\crossref{https://doi.org/10.33048/SIBJIM.2023.26.213}
\transl
\jour J. Appl. Industr. Math.
\yr 2023
\vol 17
\issue 2
\pages 414--426
\crossref{https://doi.org/10.1134/S1990478923020199}
Linking options:
https://www.mathnet.ru/eng/sjim1238
https://www.mathnet.ru/eng/sjim/v26/i2/p155
This publication is cited in the following 2 articles:
A. K. Urinov, M. S. Azizov, “Initial-Boundary Value Problem for a Degenerate High Even-Order Partial Differential Equation with the Bessel Operator”, Lobachevskii J Math, 45:2 (2024), 864
A. K. Urinov, D. D. Oripov, “O razreshimosti odnoi nachalno-granichnoi zadachi dlya vyrozhdayuschegosya uravneniya vysokogo chetnogo poryadka”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 27:4 (2023), 621–644