Abstract:
We study the first boundary-value problem for loaded equation of elliptic-hyperbolic type in rectangular domain. We establish a criterion of uniqueness. A solution to the problem is constructed in the form of the sum of a series. In substantiation of existence of a solution to a problem small denominators appear. We obtain the estimates about a separation from zero of denominators with the corresponding asymptotics. They allow to prove existence of a solution in a class of regular solutions.
Keywords:
loaded equation of mixed type, Dirichlet's problem, criterion of uniqueness, existence, series, small denominator, estimate, uniform convergence.
This publication is cited in the following 7 articles:
V. I. Korzyuk, J. V. Rudzko, “Classical solution of the Cauchy problem for a semilinear wave equation with a Dirac potential”, Dokl. Akad. nauk, 69:1 (2025), 7
B. I. Islomov, T. K. Yuldashev, O. M. Yunusov, “Nonlocal Boundary Problem for a Loaded Equation of Mixed Type in a Special Domain”, Lobachevskii J Math, 45:7 (2024), 3304
B. I. Islomov, F. M. Juraev, “Local boundary value problems for a loaded equation of
parabolic-hyperbolic type degenerating inside the domain”, Ufa Math. J., 14:1 (2022), 37–51
K. U. Khubiev, “Kraevye zadachi dlya kharakteristicheski nagruzhennogo uravneniya giperbolo-parabolicheskogo tipa”, Materialy mezhdunarodnoi konferentsii po matematicheskomu modelirovaniyu v prikladnykh naukakh “International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19”. Belgorod, 20–24 avgusta 2019 g., Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 195, VINITI RAN, M., 2021, 127–138
K. U. Khubiev, “Zadacha Bitsadze—Samarskogo dlya nagruzhennogo giperbolo-parabolicheskogo uravneniya c vyrozhdeniem poryadka v oblasti ego giperbolichnosti”, Differentsialnye uravneniya i matematicheskaya fizika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 198, VINITI RAN, M., 2021, 123–132
T. K. Yuldashev, B. I. Islomov, U. Sh. Ubaydullaev, “On boundary value problems for a mixed type fractional differential equation with Caputo operator”, Bull. Karaganda Univ-Math., 101:1 (2021), 127–137
E. Providas, I. N. Parasidis, Springer Optimization and Its Applications, 179, Mathematical Analysis in Interdisciplinary Research, 2021, 641