Loading [MathJax]/jax/output/SVG/config.js
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 195, Pages 127–138
DOI: https://doi.org/10.36535/0233-6723-2021-195-127-138
(Mi into841)
 

This article is cited in 1 scientific paper (total in 1 paper)

Boundary-value problems for a characteristically loaded hyperbolic-parabolic equation

K. U. Khubiev

Institute of Applied Mathematics and Automation, Nalchik
Full-text PDF (181 kB) Citations (1)
References:
Abstract: In this paper, we consider analogs of the Tricomi problem, problems with displacement, and problems with integral conditions in the hyperbolic part for a certain characteristically loaded model equation of mixed hyperbolic-parabolic type. We find sufficient conditions of the existence of a unique solution. The uniqueness and existence of a solution are proved by the Tricomi method and the method of integral equations, respectively. We give an example, which shows that the violation of these conditions leads to nonuniqueness of the solution.
Keywords: loaded equation, mixed-type equation, hyperbolic-parabolic equation, Tricomi problem, nonlocal problem, problem with displacement, integral condition.
Document Type: Article
UDC: 517.95
MSC: 35M10, 35M12
Language: Russian
Citation: K. U. Khubiev, “Boundary-value problems for a characteristically loaded hyperbolic-parabolic equation”, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 195, VINITI, Moscow, 2021, 127–138
Citation in format AMSBIB
\Bibitem{Khu21}
\by K.~U.~Khubiev
\paper Boundary-value problems for a characteristically loaded hyperbolic-parabolic equation
\inbook Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 195
\pages 127--138
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into841}
\crossref{https://doi.org/10.36535/0233-6723-2021-195-127-138}
Linking options:
  • https://www.mathnet.ru/eng/into841
  • https://www.mathnet.ru/eng/into/v195/p127
  • This publication is cited in the following 1 articles:
    1. K. U. Khubiev, “Analog zadachi Trikomi dlya odnogo kharakteristicheski nagruzhennogo giperbolo-parabolicheskogo uravneniya”, Doklady AMAN, 23:4 (2023), 54–61  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:156
    Full-text PDF :68
    References:36
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025