Abstract:
The paper is concerned with the classical problem concerning the chromatic number of a metric space, i.e., the minimal number of colors required to color all points in the space so that the distance (the value of the metric) between points of the same color does not belong to a given set of positive real numbers (the set of forbidden distances). New bounds for the chromatic number are obtained for the case in which the space is Rn with a metric generated by some norm (in particular, lp) and the set of forbidden distances either is finite or forms a lacunary sequence.
Keywords:
chromatic number, measurable chromatic number, coloring with forbidden distances, lacunary sequence, independence member of a graph, polyhedron, Diophantine approximation.
Citation:
N. G. Moshchevitin, A. M. Raigorodskii, “Colorings of the Space Rn with Several Forbidden Distances”, Mat. Zametki, 81:5 (2007), 733–743; Math. Notes, 81:5 (2007), 656–664
\Bibitem{MosRai07}
\by N.~G.~Moshchevitin, A.~M.~Raigorodskii
\paper Colorings of the Space $\mathbb R^n$ with Several Forbidden Distances
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 5
\pages 733--743
\mathnet{http://mi.mathnet.ru/mzm3717}
\crossref{https://doi.org/10.4213/mzm3717}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2348824}
\zmath{https://zbmath.org/?q=an:1134.05027}
\elib{https://elibrary.ru/item.asp?id=9498102}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 5
\pages 656--664
\crossref{https://doi.org/10.1134/S0001434607050112}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000247942500011}
\elib{https://elibrary.ru/item.asp?id=13564242}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34547309583}
Linking options:
https://www.mathnet.ru/eng/mzm3717
https://doi.org/10.4213/mzm3717
https://www.mathnet.ru/eng/mzm/v81/i5/p733
This publication is cited in the following 17 articles:
L. I. Bogolubsky, A. M. Raigorodskii, “A Remark on Lower Bounds for the Chromatic Numbers of Spaces of Small Dimension with Metrics ℓ1 and ℓ2”, Math. Notes, 105:2 (2019), 180–203
E. S. Gorskaya, I. M. Mitricheva, “The chromatic number of the space (Rn,l1)”, Sb. Math., 209:10 (2018), 1445–1462
A. V. Berdnikov, “Estimate for the Chromatic Number of Euclidean Space with Several Forbidden Distances”, Math. Notes, 99:5 (2016), 774–778
A. V. Berdnikov, “Chromatic number with several forbidden distances in the space with the ℓq-metric”, Journal of Mathematical Sciences, 227:4 (2017), 395–401
Gil Kalai, Surveys in Combinatorics 2015, 2015, 147
S. N. Popova, “Zero-one law for random distance graphs with vertices in {−1,0,1}n”, Problems Inform. Transmission, 50:1 (2014), 57–78
A. E. Zvonarev, A. M. Raigorodskii, D. V. Samirov, A. A. Kharlamova, “On the chromatic number of a space with forbidden equilateral triangle”, Sb. Math., 205:9 (2014), 1310–1333
A. V. Berdnikov, A. M. Raigorodskii, “On the Chromatic Number of Euclidean Space with Two Forbidden Distances”, Math. Notes, 96:5 (2014), 827–830
Zvonarev A.E., Raigorodskii A.M., Samirov D.V., Kharlamova A.A., “Improvement of the Frankl-Rodl Theorem on the Number of Edges in Hypergraphs With Forbidden Cardinalities of Edge Intersections”, Dokl. Math., 90:1 (2014), 432–434
Samirov D.V., Raigorodskii A.M., “New Bounds For the Chromatic Number of a Space With Forbidden Isosceles Triangles”, Dokl. Math., 89:3 (2014), 313–316
A. M. Raigorodskii, D. V. Samirov, “Chromatic Numbers of Spaces with Forbidden Monochromatic Triangles”, Math. Notes, 93:1 (2013), 163–171
D. V. Samirov, A. M. Raigorodskii, “New lower bounds for the chromatic number of a space with forbidden isosceles triangles”, J. Math. Sci. (N. Y.), 204:4 (2015), 531–541
Andrei M. Raigorodskii, Thirty Essays on Geometric Graph Theory, 2013, 429
N. G. Moshchevitin, “Density modulo 1 of lacunary and sublacunary sequences: application of Peres–Schlag's construction”, J. Math. Sci., 180:5 (2012), 610–625
A. M. Raigorodskii, “On the chromatic numbers of spheres in Euclidean spaces”, Dokl. Math., 81:3 (2010), 379
E. S. Gorskaya, I. M. Mitricheva (Shitova), V. Yu. Protasov, A. M. Raigorodskii, “Estimating the chromatic numbers of Euclidean space by convex minimization methods”, Sb. Math., 200:6 (2009), 783–801
A. M. Raigorodskii, I. M. Shitova, “Chromatic numbers of real and rational spaces with real or rational forbidden distances”, Sb. Math., 199:4 (2008), 579–612