Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 81, Issue 5, Pages 733–743
DOI: https://doi.org/10.4213/mzm3717
(Mi mzm3717)
 

This article is cited in 17 scientific papers (total in 17 papers)

Colorings of the Space Rn with Several Forbidden Distances

N. G. Moshchevitin, A. M. Raigorodskii

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: The paper is concerned with the classical problem concerning the chromatic number of a metric space, i.e., the minimal number of colors required to color all points in the space so that the distance (the value of the metric) between points of the same color does not belong to a given set of positive real numbers (the set of forbidden distances). New bounds for the chromatic number are obtained for the case in which the space is Rn with a metric generated by some norm (in particular, lp) and the set of forbidden distances either is finite or forms a lacunary sequence.
Keywords: chromatic number, measurable chromatic number, coloring with forbidden distances, lacunary sequence, independence member of a graph, polyhedron, Diophantine approximation.
Received: 06.07.2005
Revised: 18.08.2006
English version:
Mathematical Notes, 2007, Volume 81, Issue 5, Pages 656–664
DOI: https://doi.org/10.1134/S0001434607050112
Bibliographic databases:
UDC: 519.174
Language: Russian
Citation: N. G. Moshchevitin, A. M. Raigorodskii, “Colorings of the Space Rn with Several Forbidden Distances”, Mat. Zametki, 81:5 (2007), 733–743; Math. Notes, 81:5 (2007), 656–664
Citation in format AMSBIB
\Bibitem{MosRai07}
\by N.~G.~Moshchevitin, A.~M.~Raigorodskii
\paper Colorings of the Space $\mathbb R^n$ with Several Forbidden Distances
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 5
\pages 733--743
\mathnet{http://mi.mathnet.ru/mzm3717}
\crossref{https://doi.org/10.4213/mzm3717}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2348824}
\zmath{https://zbmath.org/?q=an:1134.05027}
\elib{https://elibrary.ru/item.asp?id=9498102}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 5
\pages 656--664
\crossref{https://doi.org/10.1134/S0001434607050112}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000247942500011}
\elib{https://elibrary.ru/item.asp?id=13564242}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34547309583}
Linking options:
  • https://www.mathnet.ru/eng/mzm3717
  • https://doi.org/10.4213/mzm3717
  • https://www.mathnet.ru/eng/mzm/v81/i5/p733
  • This publication is cited in the following 17 articles:
    1. L. I. Bogolubsky, A. M. Raigorodskii, “A Remark on Lower Bounds for the Chromatic Numbers of Spaces of Small Dimension with Metrics 1 and 2”, Math. Notes, 105:2 (2019), 180–203  mathnet  crossref  crossref  mathscinet  isi  elib
    2. E. S. Gorskaya, I. M. Mitricheva, “The chromatic number of the space (Rn,l1)”, Sb. Math., 209:10 (2018), 1445–1462  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. A. V. Berdnikov, “Estimate for the Chromatic Number of Euclidean Space with Several Forbidden Distances”, Math. Notes, 99:5 (2016), 774–778  mathnet  crossref  crossref  mathscinet  isi  elib
    4. A. V. Berdnikov, “Chromatic number with several forbidden distances in the space with the q-metric”, Journal of Mathematical Sciences, 227:4 (2017), 395–401  mathnet  mathnet  crossref
    5. Gil Kalai, Surveys in Combinatorics 2015, 2015, 147  crossref
    6. S. N. Popova, “Zero-one law for random distance graphs with vertices in {1,0,1}n”, Problems Inform. Transmission, 50:1 (2014), 57–78  mathnet  crossref  isi
    7. A. E. Zvonarev, A. M. Raigorodskii, D. V. Samirov, A. A. Kharlamova, “On the chromatic number of a space with forbidden equilateral triangle”, Sb. Math., 205:9 (2014), 1310–1333  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. A. V. Berdnikov, A. M. Raigorodskii, “On the Chromatic Number of Euclidean Space with Two Forbidden Distances”, Math. Notes, 96:5 (2014), 827–830  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    9. Zvonarev A.E., Raigorodskii A.M., Samirov D.V., Kharlamova A.A., “Improvement of the Frankl-Rodl Theorem on the Number of Edges in Hypergraphs With Forbidden Cardinalities of Edge Intersections”, Dokl. Math., 90:1 (2014), 432–434  crossref  mathscinet  zmath  isi  scopus
    10. Samirov D.V., Raigorodskii A.M., “New Bounds For the Chromatic Number of a Space With Forbidden Isosceles Triangles”, Dokl. Math., 89:3 (2014), 313–316  crossref  mathscinet  zmath  isi  scopus
    11. A. M. Raigorodskii, D. V. Samirov, “Chromatic Numbers of Spaces with Forbidden Monochromatic Triangles”, Math. Notes, 93:1 (2013), 163–171  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    12. D. V. Samirov, A. M. Raigorodskii, “New lower bounds for the chromatic number of a space with forbidden isosceles triangles”, J. Math. Sci. (N. Y.), 204:4 (2015), 531–541  mathnet  mathnet  crossref
    13. Andrei M. Raigorodskii, Thirty Essays on Geometric Graph Theory, 2013, 429  crossref
    14. N. G. Moshchevitin, “Density modulo 1 of lacunary and sublacunary sequences: application of Peres–Schlag's construction”, J. Math. Sci., 180:5 (2012), 610–625  mathnet  crossref  mathscinet  elib
    15. A. M. Raigorodskii, “On the chromatic numbers of spheres in Euclidean spaces”, Dokl. Math., 81:3 (2010), 379  crossref
    16. E. S. Gorskaya, I. M. Mitricheva (Shitova), V. Yu. Protasov, A. M. Raigorodskii, “Estimating the chromatic numbers of Euclidean space by convex minimization methods”, Sb. Math., 200:6 (2009), 783–801  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    17. A. M. Raigorodskii, I. M. Shitova, “Chromatic numbers of real and rational spaces with real or rational forbidden distances”, Sb. Math., 199:4 (2008), 579–612  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:791
    Full-text PDF :352
    References:93
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025