Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1997, Volume 62, Issue 2, Pages 268–292
DOI: https://doi.org/10.4213/mzm1610
(Mi mzm1610)
 

This article is cited in 6 scientific papers (total in 6 papers)

Analysis of bifurcation points and nontrivial branches of solutions to the stationary Vlasov–Maxwell system

N. A. Sidorova, A. V. Sinitsynb

a Irkutsk State University
b Irkutsk Computer Centre, Siberian Branch of RAS
Full-text PDF (325 kB) Citations (6)
References:
Abstract: For the Vlasov–Maxwell system, sufficient conditions are obtained for the existence of bifurcation points λ0R+ corresponding to distribution functions of the form
fi(r,v)=λˆfi(αiv2+φi(r),vdi+ψi(r)).
It is assumed that the values of the scalar and vector potentials of the electromagnetic field are prescribed at the boundary of the domain DR3 in the form ρ|D=0, j|D=0, where ρ is the charge density and j is the current density. The bifurcation equation is derived and studied for the solutions. The asymptotics of nontrivial solutions of the Vlasov–Maxwell system is constructed in a neighborhood of the bifurcation point.
Received: 08.09.1995
English version:
Mathematical Notes, 1997, Volume 62, Issue 2, Pages 223–243
DOI: https://doi.org/10.1007/BF02355910
Bibliographic databases:
UDC: 517.958+517.93
Language: Russian
Citation: N. A. Sidorov, A. V. Sinitsyn, “Analysis of bifurcation points and nontrivial branches of solutions to the stationary Vlasov–Maxwell system”, Mat. Zametki, 62:2 (1997), 268–292; Math. Notes, 62:2 (1997), 223–243
Citation in format AMSBIB
\Bibitem{SidSin97}
\by N.~A.~Sidorov, A.~V.~Sinitsyn
\paper Analysis of bifurcation points and nontrivial branches of solutions to the stationary Vlasov--Maxwell system
\jour Mat. Zametki
\yr 1997
\vol 62
\issue 2
\pages 268--292
\mathnet{http://mi.mathnet.ru/mzm1610}
\crossref{https://doi.org/10.4213/mzm1610}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1619857}
\zmath{https://zbmath.org/?q=an:0921.35010}
\elib{https://elibrary.ru/item.asp?id=13250247}
\transl
\jour Math. Notes
\yr 1997
\vol 62
\issue 2
\pages 223--243
\crossref{https://doi.org/10.1007/BF02355910}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000071268600029}
Linking options:
  • https://www.mathnet.ru/eng/mzm1610
  • https://doi.org/10.4213/mzm1610
  • https://www.mathnet.ru/eng/mzm/v62/i2/p268
  • This publication is cited in the following 6 articles:
    1. Katherine Zhiyuan Zhang, “Continuous family of equilibria of the 3D axisymmetric relativistic Vlasov-Maxwell system”, Journal of Differential Equations, 374 (2023), 279  crossref
    2. Rojas E.M. Sidorov N.A. Sinitsyn V A., “A Boundary Value Problem For Noninsulated Magnetic Regime in a Vacuum Diode”, Symmetry-Basel, 12:4 (2020), 617  crossref  isi
    3. A. L. Skubachevskii, “Vlasov–Poisson equations for a two-component plasma in a homogeneous magnetic field”, Russian Math. Surveys, 69:2 (2014), 291–330  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. N. A. Sidorov, “Bifurcation points of nonlinear operators: existence theorems, asymptotics and application to the Vlasov–Maxwell system”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 6:4 (2013), 85–106  mathnet
    5. N. A. Sidorov, R. Yu. Leontiev, A. I. Dreglea, “On Small Solutions of Nonlinear Equations with Vector Parameter in Sectorial Neighborhoods”, Math. Notes, 91:1 (2012), 90–104  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    6. N. A. Sidorov, V. R. Abdullin, “Interlaced branching equations in the theory of non-linear equations”, Sb. Math., 192:7 (2001), 1035–1052  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:644
    Full-text PDF :242
    References:79
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025