Abstract:
For the Vlasov–Maxwell system, sufficient conditions are obtained for the existence of bifurcation points λ0∈R+ corresponding to distribution functions of the form
fi(r,v)=λˆfi(−αiv2+φi(r),vdi+ψi(r)).
It is assumed that the values of the scalar and vector potentials of the electromagnetic field are prescribed at the boundary of the domain D⊂R3 in the form ρ|∂D=0, j|∂D=0, where ρ is the charge density and j is the current density. The bifurcation equation is derived and studied for the solutions. The asymptotics of nontrivial solutions of the Vlasov–Maxwell system is constructed in a neighborhood of the bifurcation point.
Citation:
N. A. Sidorov, A. V. Sinitsyn, “Analysis of bifurcation points and nontrivial branches of solutions to the stationary Vlasov–Maxwell system”, Mat. Zametki, 62:2 (1997), 268–292; Math. Notes, 62:2 (1997), 223–243
\Bibitem{SidSin97}
\by N.~A.~Sidorov, A.~V.~Sinitsyn
\paper Analysis of bifurcation points and nontrivial branches of solutions to the stationary Vlasov--Maxwell system
\jour Mat. Zametki
\yr 1997
\vol 62
\issue 2
\pages 268--292
\mathnet{http://mi.mathnet.ru/mzm1610}
\crossref{https://doi.org/10.4213/mzm1610}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1619857}
\zmath{https://zbmath.org/?q=an:0921.35010}
\elib{https://elibrary.ru/item.asp?id=13250247}
\transl
\jour Math. Notes
\yr 1997
\vol 62
\issue 2
\pages 223--243
\crossref{https://doi.org/10.1007/BF02355910}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000071268600029}
Linking options:
https://www.mathnet.ru/eng/mzm1610
https://doi.org/10.4213/mzm1610
https://www.mathnet.ru/eng/mzm/v62/i2/p268
This publication is cited in the following 6 articles:
Katherine Zhiyuan Zhang, “Continuous family of equilibria of the 3D axisymmetric relativistic Vlasov-Maxwell system”, Journal of Differential Equations, 374 (2023), 279
Rojas E.M. Sidorov N.A. Sinitsyn V A., “A Boundary Value Problem For Noninsulated Magnetic Regime in a Vacuum Diode”, Symmetry-Basel, 12:4 (2020), 617
A. L. Skubachevskii, “Vlasov–Poisson equations for a two-component plasma in a homogeneous magnetic field”, Russian Math. Surveys, 69:2 (2014), 291–330
N. A. Sidorov, “Bifurcation points of nonlinear operators: existence theorems, asymptotics and application to the Vlasov–Maxwell system”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 6:4 (2013), 85–106
N. A. Sidorov, R. Yu. Leontiev, A. I. Dreglea, “On Small Solutions of Nonlinear Equations with Vector Parameter in Sectorial Neighborhoods”, Math. Notes, 91:1 (2012), 90–104
N. A. Sidorov, V. R. Abdullin, “Interlaced branching equations in the theory of non-linear equations”, Sb. Math., 192:7 (2001), 1035–1052