Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2001, Volume 192, Issue 7, Pages 1035–1052
DOI: https://doi.org/10.1070/SM2001v192n07ABEH000582
(Mi sm582)
 

This article is cited in 6 scientific papers (total in 6 papers)

Interlaced branching equations in the theory of non-linear equations

N. A. Sidorov, V. R. Abdullin

Institute of System Dynamics and Control Theory, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: Necessary conditions for inheriting the interlacing property of a non-linear equation by the branching system are obtained. The case when the pair of linear operators interlacing the equation consists of projections or parametric families of linear operators is considered. New conditions are presented which allow one to reduce the number of the equations in the branching system and extend the range of applications of the method of successive approximations in the branching theory of non-linear equations. Solutions depending on free parameters belonging to certain hypersurfaces in Euclidean spaces are considered. The results obtained add to and extend earlier results on the applications of group analysis in branching theory.
Received: 31.01.2000 and 14.02.2001
Bibliographic databases:
UDC: 517.988.67
MSC: Primary 47J25, 47G15; Secondary 37G40
Language: English
Original paper language: Russian
Citation: N. A. Sidorov, V. R. Abdullin, “Interlaced branching equations in the theory of non-linear equations”, Sb. Math., 192:7 (2001), 1035–1052
Citation in format AMSBIB
\Bibitem{SidAbd01}
\by N.~A.~Sidorov, V.~R.~Abdullin
\paper Interlaced branching equations in the~theory of non-linear equations
\jour Sb. Math.
\yr 2001
\vol 192
\issue 7
\pages 1035--1052
\mathnet{http://mi.mathnet.ru/eng/sm582}
\crossref{https://doi.org/10.1070/SM2001v192n07ABEH000582}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1861376}
\zmath{https://zbmath.org/?q=an:1023.47044}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000172729100007}
\elib{https://elibrary.ru/item.asp?id=13803571}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035540511}
Linking options:
  • https://www.mathnet.ru/eng/sm582
  • https://doi.org/10.1070/SM2001v192n07ABEH000582
  • https://www.mathnet.ru/eng/sm/v192/i7/p107
  • This publication is cited in the following 6 articles:
    1. Sidorov N. Sidorov D. Dreglea A., “Solvability and Bifurcation of Solutions of Nonlinear Equations With Fredholm Operator”, Symmetry-Basel, 12:6 (2020), 912  crossref  isi
    2. N. A. Sidorov, “Bifurcation points of nonlinear operators: existence theorems, asymptotics and application to the Vlasov–Maxwell system”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 6:4 (2013), 85–106  mathnet
    3. N. A. Sidorov, R. Yu. Leontiev, A. I. Dreglea, “On Small Solutions of Nonlinear Equations with Vector Parameter in Sectorial Neighborhoods”, Math. Notes, 91:1 (2012), 90–104  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    4. V. A. Trenogin, B. V. Loginov, L. R. Kim-Tyan, “Stability of solutions to the Cauchy problem with respect to linear approximation, and branching equation in the root subspace”, Proc. Steklov Inst. Math., 278 (2012), 251–259  mathnet  crossref  mathscinet  isi  elib  elib
    5. B. V. Loginov, I. V. Konopleva, Yu. B. Rusak, “Symmetry and potentiality in a general problem in bifurcation theory”, Russian Math. (Iz. VUZ), 50:4 (2006), 28–38  mathnet  mathscinet  zmath  elib
    6. Karasozen B., Loginov B.V., “Invariant reduction of partially potential branching equations and iterative methods in the problem on a bifurcation point with a symmetry”, Differ. Equ., 40:3 (2004), 410–419  mathnet  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:485
    Russian version PDF:221
    English version PDF:19
    References:44
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025