Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2012, Volume 91, Issue 1, Pages 120–135
DOI: https://doi.org/10.4213/mzm8771
(Mi mzm8771)
 

This article is cited in 15 scientific papers (total in 15 papers)

On Small Solutions of Nonlinear Equations with Vector Parameter in Sectorial Neighborhoods

N. A. Sidorov, R. Yu. Leontiev, A. I. Dreglea

Irkutsk State University
References:
Abstract: We consider the nonlinear operator equation B(λ)x+R(x,λ)=0 with parameter λ, which is an element of a linear normed space Λ. The linear operator B(λ) has no bounded inverse for λ=0. The range of the operator B(0) can be nonclosed. The nonlinear operator R(x,λ) is continuous in a neighborhood of zero and R(0,0)=0. We obtain sufficient conditions for the existence of a continuous solution x(λ)0 as λ0 with maximal order of smallness in an open set S of the space Λ. The zero of the space Λ belongs to the boundary of the set S. The solutions are constructed by the method of successive approximations.
Keywords: nonlinear operator equation, Banach space, sectorial neighborhood, Fredholm operator, bifurcation, Schmidt's lemma, regularizer for a nonlinear operator.
Received: 05.03.2010
English version:
Mathematical Notes, 2012, Volume 91, Issue 1, Pages 90–104
DOI: https://doi.org/10.1134/S0001434612010105
Bibliographic databases:
Document Type: Article
UDC: 517.988.67
Language: Russian
Citation: N. A. Sidorov, R. Yu. Leontiev, A. I. Dreglea, “On Small Solutions of Nonlinear Equations with Vector Parameter in Sectorial Neighborhoods”, Mat. Zametki, 91:1 (2012), 120–135; Math. Notes, 91:1 (2012), 90–104
Citation in format AMSBIB
\Bibitem{SidLeoDre12}
\by N.~A.~Sidorov, R.~Yu.~Leontiev, A.~I.~Dreglea
\paper On Small Solutions of Nonlinear Equations with Vector Parameter in Sectorial Neighborhoods
\jour Mat. Zametki
\yr 2012
\vol 91
\issue 1
\pages 120--135
\mathnet{http://mi.mathnet.ru/mzm8771}
\crossref{https://doi.org/10.4213/mzm8771}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3201397}
\elib{https://elibrary.ru/item.asp?id=20731468}
\transl
\jour Math. Notes
\yr 2012
\vol 91
\issue 1
\pages 90--104
\crossref{https://doi.org/10.1134/S0001434612010105}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000303478400010}
\elib{https://elibrary.ru/item.asp?id=17977787}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84857604463}
Linking options:
  • https://www.mathnet.ru/eng/mzm8771
  • https://doi.org/10.4213/mzm8771
  • https://www.mathnet.ru/eng/mzm/v91/i1/p120
  • This publication is cited in the following 15 articles:
    1. N. A. Sidorov, A. I. Dreglea, “Differential Equations in Banach Spaces with an Noninvertible Operator in the Principal Part and Nonclassical Initial Conditions”, J Math Sci, 279:5 (2024), 691  crossref
    2. Noeiaghdam S. Sidorov D. Wazwaz A.-M. Sidorov N. Sizikov V., “The Numerical Validation of the Adomian Decomposition Method For Solving Volterra Integral Equation With Discontinuous Kernels Using the Cestac Method”, Mathematics, 9:3 (2021), 260  crossref  mathscinet  isi
    3. Chen Ya., Qian Y., “Stability Switches and Double Hopf Bifurcation Analysis on Two-Degree-of-Freedom Coupled Delay Van der Pol Oscillator”, Mathematics, 9:19 (2021), 2444  crossref  mathscinet  isi
    4. N. A. Sidorov, “O roli apriornykh otsenok v metode nelokalnogo prodolzheniya reshenii po parametru”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 34 (2020), 67–76  mathnet  crossref
    5. Noeiaghdam S., Dreglea A., He J., Avazzadeh Z., Suleman M., Fariborzi Araghi M.A., Sidorov D.N., Sidorov N., “Error Estimation of the Homotopy Perturbation Method to Solve Second Kind Volterra Integral Equations With Piecewise Smooth Kernels: Application of the Cadna Library”, Symmetry-Basel, 12:10 (2020), 1730  crossref  mathscinet  isi  scopus
    6. Falaleev V M. Romanova O.A. Sinitsyn V A. Dreglea I A. Leont'ev R.Yu. Sidorov D.N., “On the Occasion of the 80Th Birthday of Professor N. a. Sidorov”, Bull. Irkutsk State Univ.-Ser. Math., 32 (2020), 134–143  crossref  mathscinet  isi
    7. Sidorov N. Sidorov D. Dreglea A., “Solvability and Bifurcation of Solutions of Nonlinear Equations With Fredholm Operator”, Symmetry-Basel, 12:6 (2020), 912  crossref  isi
    8. N. A. Sidorov, A. I. Dreglya, “Differentsialnye uravneniya v banakhovykh prostranstvakh s neobratimym operatorom v glavnoi chasti i neklassicheskimi nachalnymi usloviyami”, Differentsialnye uravneniya i optimalnoe upravlenie, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 183, VINITI RAN, M., 2020, 120–129  mathnet  crossref  mathscinet
    9. N. A. Sidorov, “Classic solutions of boundary value problems for partial differential equations with operator of finite index in the main part of equation”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 27 (2019), 55–70  mathnet  crossref
    10. I. R. Muftahov, D. N. Sidorov, N. A. Sidorov, “On perturbation method for the first kind equations: regularization and application”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 8:2 (2015), 69–80  mathnet  crossref  elib
    11. O. A. Romanova, N. A. Sidorov, “O postroenii traektorii odnoi dinamicheskoi sistemy s nachalnymi dannymi na giperploskostyakh”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 12 (2015), 93–105  mathnet
    12. N. A. Sidorov, D. N. Sidorov, I. R. Muftakhov, “O roli metoda vozmuschenii i teoremy Banakha–Shteingauza v voprosakh regulyarizatsii uravnenii pervogo roda”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 14 (2015), 82–99  mathnet
    13. N. A. Sidorov, “Bifurcation points of nonlinear operators: existence theorems, asymptotics and application to the Vlasov–Maxwell system”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 6:4 (2013), 85–106  mathnet
    14. Dreglya A.I., “O razreshimosti odnoi kraevoi zadachi v modelyakh pogranichnogo sloya”, Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie, 2012, no. 4, 27–30  elib
    15. A. I. Dreglya, “O primenenii preobrazovaniya Sebana–Bonda i teoremy Koshi–Kovalevskoi v odnoi kraevoi zadache dlya sistemy Nave–Stoksa”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 5:3 (2012), 32–40  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:500
    Full-text PDF :211
    References:62
    First page:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025