Abstract:
We consider the nonlinear operator equation B(λ)x+R(x,λ)=0 with parameter λ, which is an element of a linear normed space Λ. The linear operator B(λ) has no bounded inverse for λ=0. The range of the operator B(0) can be nonclosed. The nonlinear operator R(x,λ) is continuous in a neighborhood of zero and R(0,0)=0. We obtain sufficient conditions for the existence of a continuous solution x(λ)→0 as λ→0 with maximal order of smallness in an open set S of the space Λ. The zero of the space Λ belongs to the boundary of the set S. The solutions are constructed by the method of successive approximations.
Keywords:
nonlinear operator equation, Banach space, sectorial neighborhood, Fredholm operator, bifurcation, Schmidt's lemma, regularizer for a nonlinear operator.
Citation:
N. A. Sidorov, R. Yu. Leontiev, A. I. Dreglea, “On Small Solutions of Nonlinear Equations with Vector Parameter in Sectorial Neighborhoods”, Mat. Zametki, 91:1 (2012), 120–135; Math. Notes, 91:1 (2012), 90–104
\Bibitem{SidLeoDre12}
\by N.~A.~Sidorov, R.~Yu.~Leontiev, A.~I.~Dreglea
\paper On Small Solutions of Nonlinear Equations with Vector Parameter in Sectorial Neighborhoods
\jour Mat. Zametki
\yr 2012
\vol 91
\issue 1
\pages 120--135
\mathnet{http://mi.mathnet.ru/mzm8771}
\crossref{https://doi.org/10.4213/mzm8771}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3201397}
\elib{https://elibrary.ru/item.asp?id=20731468}
\transl
\jour Math. Notes
\yr 2012
\vol 91
\issue 1
\pages 90--104
\crossref{https://doi.org/10.1134/S0001434612010105}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000303478400010}
\elib{https://elibrary.ru/item.asp?id=17977787}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84857604463}
Linking options:
https://www.mathnet.ru/eng/mzm8771
https://doi.org/10.4213/mzm8771
https://www.mathnet.ru/eng/mzm/v91/i1/p120
This publication is cited in the following 15 articles:
N. A. Sidorov, A. I. Dreglea, “Differential Equations in Banach Spaces with an Noninvertible Operator in the Principal Part and Nonclassical Initial Conditions”, J Math Sci, 279:5 (2024), 691
Noeiaghdam S. Sidorov D. Wazwaz A.-M. Sidorov N. Sizikov V., “The Numerical Validation of the Adomian Decomposition Method For Solving Volterra Integral Equation With Discontinuous Kernels Using the Cestac Method”, Mathematics, 9:3 (2021), 260
Chen Ya., Qian Y., “Stability Switches and Double Hopf Bifurcation Analysis on Two-Degree-of-Freedom Coupled Delay Van der Pol Oscillator”, Mathematics, 9:19 (2021), 2444
N. A. Sidorov, “O roli apriornykh otsenok v metode nelokalnogo prodolzheniya reshenii po parametru”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 34 (2020), 67–76
Noeiaghdam S., Dreglea A., He J., Avazzadeh Z., Suleman M., Fariborzi Araghi M.A., Sidorov D.N., Sidorov N., “Error Estimation of the Homotopy Perturbation Method to Solve Second Kind Volterra Integral Equations With Piecewise Smooth Kernels: Application of the Cadna Library”, Symmetry-Basel, 12:10 (2020), 1730
Falaleev V M. Romanova O.A. Sinitsyn V A. Dreglea I A. Leont'ev R.Yu. Sidorov D.N., “On the Occasion of the 80Th Birthday of Professor N. a. Sidorov”, Bull. Irkutsk State Univ.-Ser. Math., 32 (2020), 134–143
Sidorov N. Sidorov D. Dreglea A., “Solvability and Bifurcation of Solutions of Nonlinear Equations With Fredholm Operator”, Symmetry-Basel, 12:6 (2020), 912
N. A. Sidorov, A. I. Dreglya, “Differentsialnye uravneniya v banakhovykh prostranstvakh s neobratimym operatorom v glavnoi chasti i neklassicheskimi nachalnymi usloviyami”, Differentsialnye uravneniya i optimalnoe upravlenie, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 183, VINITI RAN, M., 2020, 120–129
N. A. Sidorov, “Classic solutions of boundary value problems for partial differential equations with operator of finite index in the main part of equation”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 27 (2019), 55–70
I. R. Muftahov, D. N. Sidorov, N. A. Sidorov, “On perturbation method for the first kind equations: regularization and application”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 8:2 (2015), 69–80
O. A. Romanova, N. A. Sidorov, “O postroenii traektorii odnoi dinamicheskoi sistemy s nachalnymi dannymi na giperploskostyakh”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 12 (2015), 93–105
N. A. Sidorov, D. N. Sidorov, I. R. Muftakhov, “O roli metoda vozmuschenii i teoremy Banakha–Shteingauza v voprosakh regulyarizatsii uravnenii pervogo roda”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 14 (2015), 82–99
N. A. Sidorov, “Bifurcation points of nonlinear operators: existence theorems, asymptotics and application to the Vlasov–Maxwell system”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 6:4 (2013), 85–106