Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2020, Volume 183, Pages 120–129
DOI: https://doi.org/10.36535/0233-6723-2020-183-120-129
(Mi into692)
 

This article is cited in 1 scientific paper (total in 1 paper)

Differential equations in Banach spaces with an irreversible operator in the principal part and nonclassical initial conditions

N. A. Sidorova, A. I. Dregleab

a Irkutsk State University
b L. A. Melentiev Energy Systems Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk
Full-text PDF (229 kB) Citations (1)
References:
Abstract: In this paper, we examine differential equations with nonclassical initial conditions and irreversible operators in their principal parts. We find necessary and sufficient conditions for the existence of unbounded solutions with a pth-order pole at points where the operator in the principal part of the differential equation is irreversible. Based on the alternative Lyapunov–Schmidt method and Laurent expansions, we propose a two-stage method for constructing expansion coefficients of the solution in a neighborhood of a pole. Illustrative examples are given. We develop the techniques of skeleton chains of linear operators in Banach spaces and discuss its applications to the statement of initial conditions for differential equations. The results obtained develop the theory of degenerate differential equations.
Keywords: Fredholm operator, Laurent series, collapsing solution, skeleton chain, initial-value problem.
Funding agency Grant number
Russian Foundation for Basic Research 19-58-53011
National Natural Science Foundation of China 6181101294
This work was supported by a joint program of the Russian Foundation for Basic Research and the National Natural Science Foundation of China (project No. 19-58-53011) and the National Natural Science Foundation of China (project No. 6181101294).
Bibliographic databases:
Document Type: Article
UDC: 518.517
Language: Russian
Citation: N. A. Sidorov, A. I. Dreglea, “Differential equations in Banach spaces with an irreversible operator in the principal part and nonclassical initial conditions”, Differential Equations and Optimal Control, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 183, VINITI, Moscow, 2020, 120–129
Citation in format AMSBIB
\Bibitem{SidDre20}
\by N.~A.~Sidorov, A.~I.~Dreglea
\paper Differential equations in Banach spaces with an irreversible operator in the principal part and nonclassical initial conditions
\inbook Differential Equations and Optimal Control
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 183
\pages 120--129
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into692}
\crossref{https://doi.org/10.36535/0233-6723-2020-183-120-129}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4237913}
Linking options:
  • https://www.mathnet.ru/eng/into692
  • https://www.mathnet.ru/eng/into/v183/p120
  • This publication is cited in the following 1 articles:
    1. V. F. Chistyakov, “On singular points of linear differential-algebraic equations with perturbations in the form of integral operators”, Comput. Math. Math. Phys., 63:6 (2023), 1028–1044  mathnet  mathnet  crossref  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:239
    Full-text PDF :105
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025