Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2019, Volume 10, Issue 4, Pages 25–51
DOI: https://doi.org/10.4213/mvk306
(Mi mvk306)
 

This article is cited in 4 scientific papers (total in 4 papers)

Methods of construction of skew linear recurrent sequences with maximal period based on the Galois polynomials factorization in the ring of matrix polynomials

M. A. Goltvanitsa

LLC "Certification Research Center", Moscow
Full-text PDF (283 kB) Citations (4)
References:
Abstract: Let pp be a prime, R=GR(qd,pd)R=GR(qd,pd) be a Galois ring of cardinality qdqd and characteristic pdpd, where q=prq=pr, S=GR(qnd,pd)S=GR(qnd,pd) be an RR-extension of degree nn and ˇSˇS be an endomorphism ring of the module RSRS. A sequence vv over SS with the recursion law
iN0:v(i+m)=psim1(v(i+m1))+...+ψ0(v(i)),ψ0,...,ψm1ˇS,
is called a skew LRS over S with a characteristic polynomial Ψ(x)=xmm1j=0ψjxj. The maximal period T(v) of such sequence equals τ=(qmn1)pd1. In this article we propose some new methods for construction the polynomials Ψ(x), which define the recursion laws of skew linear recurrent sequences of maximal period. These methods are based on the search in ˇS[x] the divisors for classic Galois polynomials of period τ over R.
Key words: Galois ring, Frobenius automorphism, ML-sequence, skew LRS, matrix polynomial, factorization.
Received 29.IV.2019
Document Type: Article
UDC: 519.113.6+512.714+519.719.2
Language: Russian
Citation: M. A. Goltvanitsa, “Methods of construction of skew linear recurrent sequences with maximal period based on the Galois polynomials factorization in the ring of matrix polynomials”, Mat. Vopr. Kriptogr., 10:4 (2019), 25–51
Citation in format AMSBIB
\Bibitem{Gol19}
\by M.~A.~Goltvanitsa
\paper Methods of construction of skew linear recurrent sequences with maximal period based on the Galois polynomials factorization in the ring of matrix polynomials
\jour Mat. Vopr. Kriptogr.
\yr 2019
\vol 10
\issue 4
\pages 25--51
\mathnet{http://mi.mathnet.ru/mvk306}
\crossref{https://doi.org/10.4213/mvk306}
Linking options:
  • https://www.mathnet.ru/eng/mvk306
  • https://doi.org/10.4213/mvk306
  • https://www.mathnet.ru/eng/mvk/v10/i4/p25
  • This publication is cited in the following 4 articles:
    1. M. A. Goltvanitsa, “Predstavleniya skruchennykh lineinykh rekurrentnykh posledovatelnostei maksimalnogo perioda nad konechnym polem”, Matem. vopr. kriptogr., 14:1 (2023), 27–43  mathnet  crossref  mathscinet
    2. M. A. Goltvanitsa, “Skruchennye σ-razdelimye lineinye rekurrentnye posledovatelnosti maksimalnogo perioda”, Matem. vopr. kriptogr., 13:1 (2022), 33–67  mathnet  crossref  mathscinet
    3. M. A. Goltvanitsa, “Novye predstavleniya znakov skruchennykh LRP pri pomoschi funktsii sled, baziruyuschiesya na nekommutativnoi teoreme Gamiltona – Keli”, Matem. vopr. kriptogr., 12:1 (2021), 23–57  mathnet  crossref
    4. I. V. Cherednik, “Peculiar properties of the p-linear decomposition of p-linear functions in terms of the shift-composition operation”, Problems Inform. Transmission, 56:4 (2020), 358–372  mathnet  crossref  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
    Statistics & downloads:
    Abstract page:505
    Full-text PDF :225
    References:59
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025