This article is cited in 4 scientific papers (total in 4 papers)
Methods of construction of skew linear recurrent sequences with maximal period based on the Galois polynomials factorization in the ring of matrix polynomials
Abstract:
Let pp be a prime, R=GR(qd,pd)R=GR(qd,pd) be a Galois ring of cardinality qdqd and characteristic pdpd, where q=prq=pr, S=GR(qnd,pd)S=GR(qnd,pd) be an RR-extension of degree nn and ˇSˇS be an endomorphism ring of the module RSRS. A sequence vv over SS with the recursion law ∀i∈N0:v(i+m)=psim−1(v(i+m−1))+...+ψ0(v(i)),ψ0,...,ψm−1∈ˇS, is called a skew LRS overSwith a characteristic polynomialΨ(x)=xm−∑m−1j=0ψjxj. The maximal period T(v) of such sequence equals τ=(qmn−1)pd−1. In this article we propose some new methods for construction the polynomials Ψ(x), which define the recursion laws of skew linear recurrent sequences of maximal period. These methods are based on the search in ˇS[x] the divisors for classic Galois polynomials of period τ over R.
Citation:
M. A. Goltvanitsa, “Methods of construction of skew linear recurrent sequences with maximal period based on the Galois polynomials factorization in the ring of matrix polynomials”, Mat. Vopr. Kriptogr., 10:4 (2019), 25–51
\Bibitem{Gol19}
\by M.~A.~Goltvanitsa
\paper Methods of construction of skew linear recurrent sequences with maximal period based on the Galois polynomials factorization in the ring of matrix polynomials
\jour Mat. Vopr. Kriptogr.
\yr 2019
\vol 10
\issue 4
\pages 25--51
\mathnet{http://mi.mathnet.ru/mvk306}
\crossref{https://doi.org/10.4213/mvk306}
Linking options:
https://www.mathnet.ru/eng/mvk306
https://doi.org/10.4213/mvk306
https://www.mathnet.ru/eng/mvk/v10/i4/p25
This publication is cited in the following 4 articles:
M. A. Goltvanitsa, “Predstavleniya skruchennykh lineinykh rekurrentnykh posledovatelnostei maksimalnogo perioda nad konechnym polem”, Matem. vopr. kriptogr., 14:1 (2023), 27–43
M. A. Goltvanitsa, “Skruchennye σ-razdelimye lineinye rekurrentnye posledovatelnosti maksimalnogo perioda”, Matem. vopr. kriptogr., 13:1 (2022), 33–67
M. A. Goltvanitsa, “Novye predstavleniya znakov skruchennykh LRP pri pomoschi funktsii sled, baziruyuschiesya na nekommutativnoi teoreme Gamiltona – Keli”, Matem. vopr. kriptogr., 12:1 (2021), 23–57
I. V. Cherednik, “Peculiar properties of the p-linear decomposition of p-linear functions in terms of the shift-composition operation”, Problems Inform. Transmission, 56:4 (2020), 358–372