Abstract:
Let pp be a prime number, R=GR(qd,pd)R=GR(qd,pd) be a Galois ring of cardinality qdqd and characteristic pdpd, where q=prq=pr, S=GR(qnd,pd)S=GR(qnd,pd) be its extension of degree nn and End(RS)End(RS) be a ring of endomorphisms of the module RSRS. A sequence vv over SS satisfying a recursion law ∀i∈N0:v(i+m)=ψm−1(v(i+m−1))+…+ψ0(v(i)), ψ0,…,ψm−1∈End(RS), is called skew linear recurrent sequence (LRS) overS; the maximal period of such sequence is equal to (qmn−1)pd−1. Using the trace function for representations of elements of skew LRS of maximal period we show that such LRS may be linearized if the coefficients in the recursion law are pairwise commuting.
Citation:
M. A. Goltvanitsa, “New representaions of elements of skew linear recurrent sequences via trace function based on the noncommutative Hamilton – Cayley theorem”, Mat. Vopr. Kriptogr., 12:1 (2021), 23–57
\Bibitem{Gol21}
\by M.~A.~Goltvanitsa
\paper New representaions of elements of skew linear recurrent sequences via trace function based on the noncommutative Hamilton -- Cayley theorem
\jour Mat. Vopr. Kriptogr.
\yr 2021
\vol 12
\issue 1
\pages 23--57
\mathnet{http://mi.mathnet.ru/mvk347}
\crossref{https://doi.org/10.4213/mvk347}
Linking options:
https://www.mathnet.ru/eng/mvk347
https://doi.org/10.4213/mvk347
https://www.mathnet.ru/eng/mvk/v12/i1/p23
This publication is cited in the following 2 articles:
M. A. Goltvanitsa, “Predstavleniya skruchennykh lineinykh rekurrentnykh posledovatelnostei maksimalnogo perioda nad konechnym polem”, Matem. vopr. kriptogr., 14:1 (2023), 27–43
M. A. Goltvanitsa, “Skruchennye $\sigma$-razdelimye lineinye rekurrentnye posledovatelnosti maksimalnogo perioda”, Matem. vopr. kriptogr., 13:1 (2022), 33–67