Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2022, Volume 13, Issue 1, Pages 33–67
DOI: https://doi.org/10.4213/mvk401
(Mi mvk401)
 

This article is cited in 1 scientific paper (total in 1 paper)

Skew σσ-splittable linear recurrent sequences with maximal period

M. A. Goltvanitsa

LLC «Certification Research Center», Moscow
Full-text PDF (568 kB) Citations (1)
References:
Abstract: Let pp be a prime number, R=GR(qd,pd)R=GR(qd,pd) be a Galois ring of cardinality qdqd and characteristic pdpd, where q=prq=pr, S=GR(qnd,pd)S=GR(qnd,pd) be its extension of degree nn and σσ be a Frobenius automorphism of SS over RR. We study sequences vv over SS satisfying recursion laws of the form
iN0:v(i+m)=sm1σkm1(v(i+m1))++s1σk1(v(i+1))+s0σk0(v(i)),
where s0,,sm1S,k0,,km1N0. We say that v is σ-splittable skew linear recurrent sequence (LRS) over S of order m. The period of such LRS is not greater than (qmn1)pd1. We obtain neccessary and sufficient conditions for σ-splittable skew LRS to have maximal period. We prove that under some conditions σ-splittable skew LRS are non-linearized skew LRS. Also we consider linear complexity of such sequences and uniqueness of minimal polynomial over S.
Key words: Galois ring, Frobenius automorphism, ML-sequence, skew LRS, recursion law.
Received 12.V.2021
Bibliographic databases:
Document Type: Article
UDC: 519.113.6+512.714+519.719.2
Language: Russian
Citation: M. A. Goltvanitsa, “Skew σ-splittable linear recurrent sequences with maximal period”, Mat. Vopr. Kriptogr., 13:1 (2022), 33–67
Citation in format AMSBIB
\Bibitem{Gol22}
\by M.~A.~Goltvanitsa
\paper Skew $\sigma$-splittable linear recurrent sequences with maximal period
\jour Mat. Vopr. Kriptogr.
\yr 2022
\vol 13
\issue 1
\pages 33--67
\mathnet{http://mi.mathnet.ru/mvk401}
\crossref{https://doi.org/10.4213/mvk401}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4409139}
Linking options:
  • https://www.mathnet.ru/eng/mvk401
  • https://doi.org/10.4213/mvk401
  • https://www.mathnet.ru/eng/mvk/v13/i1/p33
  • This publication is cited in the following 1 articles:
    1. M. A. Goltvanitsa, “Predstavleniya skruchennykh lineinykh rekurrentnykh posledovatelnostei maksimalnogo perioda nad konechnym polem”, Matem. vopr. kriptogr., 14:1 (2023), 27–43  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
    Statistics & downloads:
    Abstract page:240
    Full-text PDF :75
    References:61
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025