Abstract:
Let pp be a prime number, R=GR(qd,pd)R=GR(qd,pd) be a Galois ring of cardinality qdqd and characteristic pdpd, where q=prq=pr, S=GR(qnd,pd)S=GR(qnd,pd) be its extension of degree nn and σσ be a Frobenius automorphism of SS over RR. We study sequences vv over SS satisfying recursion laws of the form ∀i∈N0:v(i+m)=sm−1σkm−1(v(i+m−1))+…+s1σk1(v(i+1))+s0σk0(v(i)), where s0,…,sm−1∈S,k0,…,km−1∈N0. We say that v is σ-splittable skew linear recurrent sequence (LRS) over S of order m. The period of such LRS is not greater than (qmn−1)pd−1. We obtain neccessary and sufficient conditions for σ-splittable skew LRS to have maximal period. We prove that under some conditions σ-splittable skew LRS are non-linearized skew LRS. Also we consider linear complexity of such sequences and uniqueness of minimal polynomial over S.
\Bibitem{Gol22}
\by M.~A.~Goltvanitsa
\paper Skew $\sigma$-splittable linear recurrent sequences with maximal period
\jour Mat. Vopr. Kriptogr.
\yr 2022
\vol 13
\issue 1
\pages 33--67
\mathnet{http://mi.mathnet.ru/mvk401}
\crossref{https://doi.org/10.4213/mvk401}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4409139}
Linking options:
https://www.mathnet.ru/eng/mvk401
https://doi.org/10.4213/mvk401
https://www.mathnet.ru/eng/mvk/v13/i1/p33
This publication is cited in the following 1 articles:
M. A. Goltvanitsa, “Predstavleniya skruchennykh lineinykh rekurrentnykh posledovatelnostei maksimalnogo perioda nad konechnym polem”, Matem. vopr. kriptogr., 14:1 (2023), 27–43