Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2015, Volume 15, Issue 1, Pages 45–49
DOI: https://doi.org/10.18500/1816-9791-2015-15-1-45-49
(Mi isu563)
 

This article is cited in 5 scientific papers (total in 5 papers)

Mathematics

Almost periodic at infinity solutions of difference equations

A. A. Ryzhkova, I. A. Trishina

Voronezh State University, 1, Universitetskaya pl., 304006, Voronezh, Russia
Full-text PDF (153 kB) Citations (5)
References:
Abstract: A class of sequences almost periodic at infinity is introduced and studied. The necessity to consider such sequences is based on the fact that they appear in difference equations under consideration. The main results relate to the proof of almost periodicity at infinity of solutions of difference equations.
Key words: periodic sequence at infinity, difference equations, spectral theory.
Bibliographic databases:
Document Type: Article
UDC: 501.1
Language: Russian
Citation: A. A. Ryzhkova, I. A. Trishina, “Almost periodic at infinity solutions of difference equations”, Izv. Saratov Univ. Math. Mech. Inform., 15:1 (2015), 45–49
Citation in format AMSBIB
\Bibitem{RyzTri15}
\by A.~A.~Ryzhkova, I.~A.~Trishina
\paper Almost periodic at infinity solutions of difference equations
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2015
\vol 15
\issue 1
\pages 45--49
\mathnet{http://mi.mathnet.ru/isu563}
\crossref{https://doi.org/10.18500/1816-9791-2015-15-1-45-49}
\elib{https://elibrary.ru/item.asp?id=23144239}
Linking options:
  • https://www.mathnet.ru/eng/isu563
  • https://www.mathnet.ru/eng/isu/v15/i1/p45
  • This publication is cited in the following 5 articles:
    1. I. A. Vysotskaya, “Solutions of Difference Equations Almost Periodic at Infinity”, J Math Sci, 263:5 (2022), 635  crossref
    2. I. A. Vysotskaya, “Pochti periodicheskie na beskonechnosti resheniya raznostnykh uravnenii”, Materialy Voronezhskoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy». 28 yanvarya–2 fevralya 2019 g.  Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 171, VINITI RAN, M., 2019, 38–46  mathnet  crossref  elib
    3. A. G. Baskakov, I. I. Strukova, I. A. Trishina, “Solutions almost periodic at infinity to differential equations with unbounded operator coefficients”, Siberian Math. J., 59:2 (2018), 231–242  mathnet  crossref  crossref  isi  elib
    4. A. A. Ryzhkova, “Garmonicheskii analiz periodicheskikh na beskonechnosti posledovatelnostei”, Vestn. Volgogr. gos. un-ta. Ser. 1, Mat. Fiz., 2017, no. 1(38), 22–32  mathnet  crossref
    5. I. A. Trishina, “Pochti periodicheskie na beskonechnosti funktsii otnositelno podprostranstva integralno ubyvayuschikh na beskonechnosti funktsii”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 17:4 (2017), 402–418  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:406
    Full-text PDF :117
    References:82
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025