Abstract:
A class of sequences almost periodic at infinity is introduced and studied. The necessity to consider such sequences is based on the fact that they appear in difference equations under consideration. The main results relate to the proof of almost periodicity at infinity of solutions of difference equations.
Key words:
periodic sequence at infinity, difference equations, spectral theory.
Bibliographic databases:
Document Type:
Article
UDC:
501.1
Language: Russian
Citation:
A. A. Ryzhkova, I. A. Trishina, “Almost periodic at infinity solutions of difference equations”, Izv. Saratov Univ. Math. Mech. Inform., 15:1 (2015), 45–49
This publication is cited in the following 5 articles:
I. A. Vysotskaya, “Solutions of Difference Equations Almost Periodic at Infinity”, J Math Sci, 263:5 (2022), 635
I. A. Vysotskaya, “Pochti periodicheskie na beskonechnosti resheniya raznostnykh uravnenii”, Materialy Voronezhskoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy». 28 yanvarya–2 fevralya 2019 g. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 171, VINITI RAN, M., 2019, 38–46
A. G. Baskakov, I. I. Strukova, I. A. Trishina, “Solutions almost periodic at infinity to differential equations with unbounded operator coefficients”, Siberian Math. J., 59:2 (2018), 231–242
A. A. Ryzhkova, “Garmonicheskii analiz periodicheskikh na beskonechnosti posledovatelnostei”, Vestn. Volgogr. gos. un-ta. Ser. 1, Mat. Fiz., 2017, no. 1(38), 22–32
I. A. Trishina, “Pochti periodicheskie na beskonechnosti funktsii otnositelno podprostranstva integralno ubyvayuschikh na beskonechnosti funktsii”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 17:4 (2017), 402–418