Loading [MathJax]/jax/output/SVG/config.js
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2019, Volume 171, Pages 38–46
DOI: https://doi.org/10.36535/0233-6723-2019-171-38-46
(Mi into531)
 

Almost periodic at infinity solutions of difference equations

I. A. Vysotskaya

Voronezh State University
References:
Abstract: We consider a new class of functions almost periodic at infinity defined by using the subspace of functions that integrally decrease at infinity. We propose four definitions of functions almost periodic at infinity and prove their equivalence. Also, we obtain spectral criteria of almost periodicity at infinity of bounded solutions of systems of linear difference equations and their asymptotic representation.
Keywords: function almost periodic at infinity, function slowly changing at infinity, function integrally decreasing at infinity, difference equation.
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 39A24
Language: Russian
Citation: I. A. Vysotskaya, “Almost periodic at infinity solutions of difference equations”, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 2, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 171, VINITI, Moscow, 2019, 38–46
Citation in format AMSBIB
\Bibitem{Vys19}
\by I.~A.~Vysotskaya
\paper Almost periodic at infinity solutions of difference equations
\inbook Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 2
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2019
\vol 171
\pages 38--46
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into531}
\crossref{https://doi.org/10.36535/0233-6723-2019-171-38-46}
\elib{https://elibrary.ru/item.asp?id=42460020}
Linking options:
  • https://www.mathnet.ru/eng/into531
  • https://www.mathnet.ru/eng/into/v171/p38
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:174
    Full-text PDF :77
    References:32
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025