Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2018, Volume 59, Number 2, Pages 293–308
DOI: https://doi.org/10.17377/smzh.2018.59.205
(Mi smj2972)
 

This article is cited in 13 scientific papers (total in 13 papers)

Solutions almost periodic at infinity to differential equations with unbounded operator coefficients

A. G. Baskakov, I. I. Strukova, I. A. Trishina

Voronezh State University, Voronezh, Russia
References:
Abstract: The new class of functions almost periodic at infinity is defined using the subspace of functions with integrals decreasing at infinity. We obtain spectral criteria for almost periodicity at infinity of bounded solutions to differential equations with unbounded operator coefficients. For the new class of asymptotically finite operator semigroups we prove the almost periodicity at infinity of their orbits.
Keywords: functions almost periodic at infinity, Banach modules, differential equations with unbounded operator coefficients, function spectrum, operator spectrum, operator semigroups.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.3464.2017/4.6
Russian Foundation for Basic Research 16-01-00197
The first author was supported by the Ministry of Science and Education of the Russian Federation (Grant 1.3464.2017/4.6) and the second author was supported by the Russian Foundation for Basic Research (Grant 16-01-00197).
Received: 27.06.2017
English version:
Siberian Mathematical Journal, 2018, Volume 59, Issue 2, Pages 231–242
DOI: https://doi.org/10.1134/S0037446618020052
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 35R30
Language: Russian
Citation: A. G. Baskakov, I. I. Strukova, I. A. Trishina, “Solutions almost periodic at infinity to differential equations with unbounded operator coefficients”, Sibirsk. Mat. Zh., 59:2 (2018), 293–308; Siberian Math. J., 59:2 (2018), 231–242
Citation in format AMSBIB
\Bibitem{BasStrTri18}
\by A.~G.~Baskakov, I.~I.~Strukova, I.~A.~Trishina
\paper Solutions almost periodic at infinity to differential equations with unbounded operator coefficients
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 2
\pages 293--308
\mathnet{http://mi.mathnet.ru/smj2972}
\crossref{https://doi.org/10.17377/smzh.2018.59.205}
\elib{https://elibrary.ru/item.asp?id=32817962}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 2
\pages 231--242
\crossref{https://doi.org/10.1134/S0037446618020052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000430858600005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85046635383}
Linking options:
  • https://www.mathnet.ru/eng/smj2972
  • https://www.mathnet.ru/eng/smj/v59/i2/p293
  • This publication is cited in the following 13 articles:
    1. Wei-Gang Jian, Hui-Sheng Ding, “Tauberian theorems on ℝ⁺ and applications”, Proc. Amer. Math. Soc., 2024  crossref
    2. Hui-Sheng Ding, Wei-Gang Jian, Nguyen Van Minh, Gaston M. N'Guérékata, “Kadets type and Loomis type theorems for asymptotically almost periodic functions”, Journal of Differential Equations, 373 (2023), 389  crossref
    3. Jian Wei-Gang, Ding Hui-Sheng, “Loomis type 定理 on the half-line and its application”, Sci. Sin.-Math., 53:9 (2023), 1241  crossref
    4. I. A. Vysotskaya, “Solutions of Difference Equations Almost Periodic at Infinity”, J Math Sci, 263:5 (2022), 635  crossref
    5. I. I. Strukova, “On Some Properties of Functions Almost Periodic at Infinity from Homogeneous Spaces”, J Math Sci, 263:5 (2022), 643  crossref
    6. V. E. Strukov, “On Distributions That Are Almost Periodic at Infinity”, J Math Sci, 263:4 (2022), 511  crossref
    7. I. A. Vysotskaya, I. I. Strukova, “Issledovanie nekotorykh klassov pochti periodicheskikh na beskonechnosti funktsii”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 21:1 (2021), 4–14  mathnet  crossref
    8. A. G. Baskakov, V. E. Strukov, I. I. Strukova, “Almost periodic at infinity functions from homogeneous spaces as solutions to differential equations with unbounded operator coefficients”, Eurasian Math. J., 11:4 (2020), 8–24  mathnet  crossref
    9. A. G. Baskakov, V. E. Strukov, I. I. Strukova, “Harmonic analysis of functions in homogeneous spaces and harmonic distributions that are periodic or almost periodic at infinity”, Sb. Math., 210:10 (2019), 1380–1427  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. V. E. Strukov, “O raspredeleniyakh, pochti periodicheskikh na beskonechnosti”, Materialy Voronezhskoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy». 28 yanvarya–2 fevralya 2019 g.  Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 170, VINITI RAN, M., 2019, 51–61  mathnet  crossref  elib
    11. I. I. Strukova, “O nekotorykh svoistvakh pochti periodicheskikh na beskonechnosti funktsii iz odnorodnykh prostranstv”, Materialy Voronezhskoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy». 28 yanvarya–2 fevralya 2019 g.  Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 171, VINITI RAN, M., 2019, 47–56  mathnet  crossref  elib
    12. I. A. Vysotskaya, “Pochti periodicheskie na beskonechnosti resheniya raznostnykh uravnenii”, Materialy Voronezhskoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy». 28 yanvarya–2 fevralya 2019 g.  Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 171, VINITI RAN, M., 2019, 38–46  mathnet  crossref  elib
    13. A. G. Baskakov, V. E. Strukov, I. I. Strukova, “On the almost periodic at infinity functions from homogeneous spaces”, Probl. anal. Issues Anal., 7(25):2 (2018), 3–19  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:406
    Full-text PDF :106
    References:57
    First page:13
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025