Loading [MathJax]/jax/output/SVG/config.js
Russian Academy of Sciences. Izvestiya Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Izvestiya Mathematics, 1994, Volume 42, Issue 1, Pages 67–89
DOI: https://doi.org/10.1070/IM1994v042n01ABEH001534
(Mi im888)
 

This article is cited in 10 scientific papers (total in 10 papers)

Alexander polynomials of plane algebraic curves

Vik. S. Kulikov
References:
Abstract: The author studies the fundamental group of the complement of an algebraic curve $D\subset\mathbf C^2$ defined by an equation $f(x,y)=0$. Let $F\colon X=\mathbf C^2\setminus D\to\mathbf C^*=\mathbf C\setminus\{0\}$ be the morphism defined by the equation $z=f(x,y)$. The main result is that if the generic fiber $Y=F^{-1}(z_0)$ is irreducible, then the kernel of the homomorphism $F_*\colon\pi_1(X)\to\pi_1(\mathbf C^*)$ is a finitely generated group. In particular, if $D$ is an irreducible curve, then the commutator subgroup of $\pi_1(X)$ is finitely generated.
The internal and external Alexander polynomials of a curve $D$ (denoted by $\Delta_{in}(t)$ and $\Delta_{ex}(t)$ respectively) are introduced, and it is shown that the Alexander polynomial $\Delta_1(t)$ of the curve $D$ divides $\Delta_{in}(t)$ and $\Delta_{ex}(t)$ and is a reciprocal polynomial whose roots are roots of unity. Furthermore, if $D$ is an irreducible curve, the Alexander polynomial $\Delta_1(t)$ of the curve $D$ satisfies the condition $\Delta_1(1)=\pm1$. From this it follows that among the roots of the Alexander polynomial $\Delta_1(t)$ of an irreducible curve there are no primitive roots of unity of degree $p^n$, where $p$ is a prime number.
Received: 24.03.1992
Bibliographic databases:
Document Type: Article
UDC: 512.7+515.1
Language: English
Original paper language: Russian
Citation: Vik. S. Kulikov, “Alexander polynomials of plane algebraic curves”, Russian Acad. Sci. Izv. Math., 42:1 (1994), 67–89
Citation in format AMSBIB
\Bibitem{Kul93}
\by Vik.~S.~Kulikov
\paper Alexander polynomials of plane algebraic curves
\jour Russian Acad. Sci. Izv. Math.
\yr 1994
\vol 42
\issue 1
\pages 67--89
\mathnet{http://mi.mathnet.ru/eng/im888}
\crossref{https://doi.org/10.1070/IM1994v042n01ABEH001534}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1220582}
\zmath{https://zbmath.org/?q=an:0811.14017}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1994IzMat..42...67K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994NH32100004}
Linking options:
  • https://www.mathnet.ru/eng/im888
  • https://doi.org/10.1070/IM1994v042n01ABEH001534
  • https://www.mathnet.ru/eng/im/v57/i1/p76
    Cycle of papers
    This publication is cited in the following 10 articles:
    1. Vik. S. Kulikov, “Alexander modules of irreducible $C$-groups”, Izv. Math., 72:2 (2008), 305–344  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. Vik. S. Kulikov, “Hurwitz curves”, Russian Math. Surveys, 62:6 (2007), 1043–1119  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    3. Vik. S. Kulikov, “Alexander polynomials of Hurwitz curves”, Izv. Math., 70:1 (2006), 69–86  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    4. G.-M. Greuel, Vik. S. Kulikov, “On symplectic coverings of the projective plane”, Izv. Math., 69:4 (2005), 667–701  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    5. Alexandru Dimca, Commutative Algebra, Singularities and Computer Algebra, 2003, 113  crossref
    6. Vik. S. Kulikov, “On the fundamental groups of complements of toral curves”, Izv. Math., 61:1 (1997), 89–112  mathnet  crossref  crossref  mathscinet  zmath  isi
    7. Vik. S. Kulikov, “Finite presentability of the commutator subgroup of the fundamental group of the complement of a plane curve”, Izv. Math., 61:5 (1997), 961–967  mathnet  crossref  crossref  mathscinet  zmath  isi
    8. Vik. S. Kulikov, V. S. Kulikov, “On the monodromy and mixed Hodge structure on cohomology of the infinite cyclic covering of the complement to a plane algebraic curve”, Izv. Math., 59:2 (1995), 367–386  mathnet  crossref  mathscinet  zmath  isi
    9. Vik. S. Kulikov, “On plane algebraic curves of positive Albanese dimension”, Izv. Math., 59:6 (1995), 1173–1192  mathnet  crossref  mathscinet  zmath  isi
    10. Vik. S. Kulikov, “A geometric realization of $C$-groups”, Russian Acad. Sci. Izv. Math., 45:1 (1995), 197–206  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:479
    Russian version PDF:159
    English version PDF:21
    References:69
    First page:2
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025