Abstract:
We show that for almost all curves $D$ in $\mathbb C^2$ given by an equation of the form
$g(x,y)^a+h(x,y)^b=0$, where $a>1$ and $b>1$ are coprime integers, the fundamental group of the complement of the curve has presentation $\pi_1(\mathbb C^2 \setminus D) \simeq (x_1,x_2\mid x_1^a=x_2^b)$, that is, it coincides with the group of the torus
knot $K_{a,b}$. In the projective case, for almost every curve $\overline D$
in $\mathbb P^2$ which is the projective closure of a curve in $\mathbb C^2$ given by an equation of the form $g(x,y)^a+h(x,y)^b=0$, the fundamental group $\pi_1(\mathbb P^2\setminus\overline D)$ of the complement is a free product with amalgamated subgroup of two cyclic groups of finite order. In particular, for the general curve
$\overline D\subset\mathbb P^2$ given by the equation
$l_{bc}^a(z_0,z_1,z_2)+l_{ac}^b(z_0,z_1,z_2)=0$, where $l_q$ is a homogenous polynomial of degree $q$, we have $\pi_1(\mathbb P^2\setminus\overline D)\simeq\langle x_1,x_2\mid x_1^a=x_2^b,x_1^{ac}=1\rangle$.
\Bibitem{Kul97}
\by Vik.~S.~Kulikov
\paper On the fundamental groups of complements of toral curves
\jour Izv. Math.
\yr 1997
\vol 61
\issue 1
\pages 89--112
\mathnet{http://mi.mathnet.ru/eng/im106}
\crossref{https://doi.org/10.1070/IM1997v061n01ABEH000106}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1440314}
\zmath{https://zbmath.org/?q=an:0907.14013}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XR83300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747020665}
Linking options:
https://www.mathnet.ru/eng/im106
https://doi.org/10.1070/IM1997v061n01ABEH000106
https://www.mathnet.ru/eng/im/v61/i1/p89
This publication is cited in the following 1 articles: