Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2014, Volume 78, Issue 5, Pages 855–876
DOI: https://doi.org/10.1070/IM2014v078n05ABEH002710
(Mi im8121)
 

This article is cited in 34 scientific papers (total in 35 papers)

A geometric description of domains whose Hardy constant is equal to 1/4

F. G. Avkhadiev

Kazan (Volga Region) Federal University
References:
Abstract: We give a geometric description of families of non-convex planar and spatial domains in which the following Hardy inequality holds: the Dirichlet integral of any smooth compactly supported function f on the domain is greater than or equal to one quarter of the integral of f2(x)/δ2(x), where δ(x) is the distance from x to the boundary of the domain. Our geometric description is based analytically on new one-dimensional Hardy-type inequalities with special weights and on new constants related to these inequalities and hypergeometric functions.
Keywords: Hardy inequalities, non-convex domains, hypergeometric functions, torsional rigidity.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00351-a
12-01-00636-a
Received: 16.04.2013
Revised: 10.02.2014
Bibliographic databases:
Document Type: Article
UDC: 517.5+517.518.28
MSC: 26D10, 33C20
Language: English
Original paper language: Russian
Citation: F. G. Avkhadiev, “A geometric description of domains whose Hardy constant is equal to 1/4”, Izv. Math., 78:5 (2014), 855–876
Citation in format AMSBIB
\Bibitem{Avk14}
\by F.~G.~Avkhadiev
\paper A geometric description of domains whose Hardy constant is equal to~1/4
\jour Izv. Math.
\yr 2014
\vol 78
\issue 5
\pages 855--876
\mathnet{http://mi.mathnet.ru/eng/im8121}
\crossref{https://doi.org/10.1070/IM2014v078n05ABEH002710}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3308642}
\zmath{https://zbmath.org/?q=an:06381141}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014IzMat..78..855A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000344454800001}
\elib{https://elibrary.ru/item.asp?id=22834326}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84908530156}
Linking options:
  • https://www.mathnet.ru/eng/im8121
  • https://doi.org/10.1070/IM2014v078n05ABEH002710
  • https://www.mathnet.ru/eng/im/v78/i5/p3
  • This publication is cited in the following 35 articles:
    1. R. G. Nasibullin, “Gipoteza Avkhadieva–Virtsa o nailuchshikh konstantakh Brezisa–Markusa”, Matem. sb., 216:4 (2025), 90–112  mathnet  crossref
    2. Miltiadis Paschalis, “Shape sensitivity of the Hardy constant involving the distance from a boundary submanifold”, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 154:2 (2024), 408  crossref
    3. Gerassimos Barbatis, Trends in Mathematics, 4, Modern Problems in PDEs and Applications, 2024, 3  crossref
    4. Miltiadis Paschalis, “Hardy inequalities and uncertainty principles in the presence of a black hole”, Arch. Math., 2024  crossref
    5. R. G. Nasibullin, “Hardy type inequalities for one weight function and their applications”, Izv. Math., 87:2 (2023), 362–388  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    6. F. G. Avkhadiev, I. R. Kayumov, S. R. Nasyrov, “Extremal problems in geometric function theory”, Russian Math. Surveys, 78:2 (2023), 211–271  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    7. F. G. Avkhadiev, “Embedding theorems related to torsional rigidity and principal frequency”, Izv. Math., 86:1 (2022), 1–31  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    8. Nasibullin R., “Hardy and Rellich Type Inequalities With Remainders”, Czech. Math. J., 72:1 (2022), 87–110  crossref  mathscinet  isi
    9. F. G. Avkhadiev, “Hardy-type inequalities with sharp constants in domains lambda-close to convex”, Siberian Math. J., 63:3 (2022), 395–411  mathnet  crossref  crossref
    10. R. G. Nasibullin, “The geometry of one-dimensional and spatial Hardy type inequalities”, Russian Math. (Iz. VUZ), 66:11 (2022), 46–78  mathnet  crossref  crossref
    11. R. G. Nasibullin, “Hardy-type inequalities for the Jacobi weight with applications”, Siberian Math. J., 63:6 (2022), 1121–1139  mathnet  crossref  crossref
    12. R. G. Nasibullin, “Sharp conformally invariant Hardy-type inequalities with remainders”, Eurasian Math. J., 12:3 (2021), 46–56  mathnet  crossref
    13. Avkhadiev F., “Selected Results and Open Problems on Hardy-Rellich and Poincare-Friedrichs Inequalities”, Anal. Math. Phys., 11:3 (2021), 134  crossref  mathscinet  isi
    14. F. G. Avkhadiev, “Properties and applications of the distance functions on open sets of the Euclidean space”, Russian Math. (Iz. VUZ), 64:4 (2020), 75–79  mathnet  crossref  crossref  isi
    15. R. G. Nasibullin, R. V. Makarov, “Hardy's inequalities with remainders and lamb-type equations”, Siberian Math. J., 61:6 (2020), 1102–1119  mathnet  crossref  crossref  isi  elib
    16. Makarov V R., Nasibullin R.G., “Hardy Type Inequalities and Parametric Lamb Equation”, Indag. Math.-New Ser., 31:4 (2020), 632–649  crossref  mathscinet  isi
    17. Avkhadiev F.G., “A Strong Form of Hardy Type Inequalities on Domains of the Euclidean Space”, Lobachevskii J. Math., 41:11, SI (2020), 2120–2135  crossref  mathscinet  isi
    18. R. G. Nasibullin, “Brezis–Marcus type inequalities with Lamb constant”, Sib. elektron. matem. izv., 16 (2019), 449–464  mathnet  crossref
    19. F. G. Avkhadiev, “Conformally invariant inequalities in domains in Euclidean space”, Izv. Math., 83:5 (2019), 909–931  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    20. R. Nasibullin, “A geometrical version of Hardy-Rellich type inequalities”, Math. Slovaca, 69:4 (2019), 785–800  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:1028
    Russian version PDF:215
    English version PDF:26
    References:182
    First page:137
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025