Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1987, Volume 29, Issue 3, Pages 511–533
DOI: https://doi.org/10.1070/IM1987v029n03ABEH000981
(Mi im1568)
 

This article is cited in 31 scientific papers (total in 31 papers)

Paradoxes of limit passage in solutions of boundary value problems involving the approximation of smooth domains by polygonal domains

V. G. Maz'ya, S. A. Nazarov
References:
Abstract: The Sapondzhyan–Babuska paradox consists in the fact that, when thin circular plates are approximated by regular polygons with freely supported edges, the limit solution does not satisfy the conditions of free support on the circle. In this article, new effects of the same nature are found. In particular, plates with convex holes are considered. Here, in contrast to the case of convex plates, the boundary conditions on the polygon are not preserved in the limit. Methods of approximating a smooth contour leading to passage to the limit from conditions of free support to conditions of rigid support are discussed.
Bibliography: 20 titles.
Received: 10.12.1984
Bibliographic databases:
UDC: 517.946:539.3
MSC: 74C35, 73K10, 35J67
Language: English
Original paper language: Russian
Citation: V. G. Maz'ya, S. A. Nazarov, “Paradoxes of limit passage in solutions of boundary value problems involving the approximation of smooth domains by polygonal domains”, Math. USSR-Izv., 29:3 (1987), 511–533
Citation in format AMSBIB
\Bibitem{MazNaz86}
\by V.~G.~Maz'ya, S.~A.~Nazarov
\paper Paradoxes of limit passage in solutions of boundary value problems involving the approximation of smooth domains by polygonal domains
\jour Math. USSR-Izv.
\yr 1987
\vol 29
\issue 3
\pages 511--533
\mathnet{http://mi.mathnet.ru/eng/im1568}
\crossref{https://doi.org/10.1070/IM1987v029n03ABEH000981}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=883157}
\zmath{https://zbmath.org/?q=an:0635.73062}
Linking options:
  • https://www.mathnet.ru/eng/im1568
  • https://doi.org/10.1070/IM1987v029n03ABEH000981
  • https://www.mathnet.ru/eng/im/v50/i6/p1156
  • This publication is cited in the following 31 articles:
    1. A. A. Chernyaev, “Geometricheskoe modelirovanie formy parallelogrammnykh plastin v zadache svobodnykh kolebanii s ispolzovaniem konformnykh radiusov”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2021, no. 70, 143–159  mathnet  crossref
    2. D. Gomes, S. A. Nazarov, M.-E. Peres, “Tochechnoe kreplenie plastiny Kirkhgofa vdol ee kromki”, Matematicheskie voprosy teorii rasprostraneniya voln. 50, Posvyaschaetsya devyanostoletiyu Vasiliya Mikhailovicha BABIChA, Zap. nauchn. sem. POMI, 493, POMI, SPb., 2020, 107–137  mathnet
    3. Alexandre Kawano, Luís Yamaoka, “Uniqueness in the determination of vibration sources in polygonal plates observing the displacement over a space‐time open set”, Z Angew Math Mech, 99:8 (2019)  crossref
    4. Francesco Ferraresso, Pier Domenico Lamberti, “On a Babuška Paradox for Polyharmonic Operators: Spectral Stability and Boundary Homogenization for Intermediate Problems”, Integr. Equ. Oper. Theory, 91:6 (2019)  crossref
    5. José M. Arrieta, Francesco Ferraresso, Pier Domenico Lamberti, “Boundary homogenization for a triharmonic intermediate problem”, Math Methods in App Sciences, 41:3 (2018), 979  crossref
    6. José M. Arrieta, Pier Domenico Lamberti, “Higher order elliptic operators on variable domains. Stability results and boundary oscillations for intermediate problems”, Journal of Differential Equations, 263:7 (2017), 4222  crossref
    7. Guido Sweers, “On Sign Preservation for Clotheslines, Curtain Rods, Elastic Membranes and Thin Plates”, Jahresber. Dtsch. Math. Ver., 118:4 (2016), 275  crossref
    8. José M. Urquiza, André Garon, Marie-Isabelle Farinas, “Weak imposition of the slip boundary condition on curved boundaries for Stokes flow”, Journal of Computational Physics, 256 (2014), 748  crossref
    9. S. A. Nazarov, “Asymptotics of eigenvalues of the Dirichlet problem in a skewed T-shaped waveguide”, Comput. Math. Math. Phys., 54:5 (2014), 793–814  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    10. Hamid Bellout, Frederick Bloom, Incompressible Bipolar and Non-Newtonian Viscous Fluid Flow, 2014, 137  crossref
    11. Ibrahima Dione, Cristian Tibirna, José Urquiza, “Stokes equations with penalised slip boundary conditions”, International Journal of Computational Fluid Dynamics, 27:6-7 (2013), 283  crossref
    12. José M. Arrieta, P.D.omenico Lamberti, “Spectral stability results for higher-order operators under perturbations of the domain”, Comptes Rendus Mathematique, 2013  crossref
    13. Dione I., Urquiza J.M., “Finite Element Approximations of the Lame System with Penalized Ideal Contact Boundary Conditions”, Appl. Math. Comput., 223 (2013), 115–126  crossref  isi
    14. S. A. Nazarov, “Asymptotics of trapped modes and eigenvalues below the continuous spectrum of a waveguide with a thin shielding obstacle”, St. Petersburg Math. J., 23:3 (2012), 571–601  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    15. Nazarov S.A., Svirs G.Kh., Stilyanou A., “O paradoksakh v zadachakh izgiba mnogougolnykh plastin s “sharnirno zakreplennym” kraem”, Doklady Akademii nauk, 439:4 (2011), 476–480  elib
    16. Nazarov S.A., Sweers G., Stylianou A., “Paradoxes in Problems on Bending of Polygonal Plates with a Hinged/Supported Edge”, Dokl. Phys., 56:8 (2011), 439–443  crossref  adsnasa  isi
    17. S. A. Nazarov, “Variational and asymptotic methods for finding eigenvalues below the continuous spectrum threshold”, Siberian Math. J., 51:5 (2010), 866–878  mathnet  crossref  mathscinet  isi  elib
    18. V. A. Kozlov, S. A. Nazarov, “The spectrum asymptotics for the Dirichlet problem in the case of the biharmonic operator in a domain with highly indented boundary”, St. Petersburg Math. J., 22:6 (2011), 941–983  mathnet  crossref  mathscinet  zmath  isi
    19. Sweers G., “A Survey on Boundary Conditions for the Biharmonic”, Complex Var. Elliptic Equ., 54:2 (2009), 79–93  crossref  mathscinet  zmath  isi
    20. S. A. Nazarov, “Asymptotics of solutions and modelling the problems of elasticity theory in domains with rapidly oscillating boundaries”, Izv. Math., 72:3 (2008), 509–564  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:709
    Russian version PDF:219
    English version PDF:33
    References:103
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025