Typesetting math: 100%
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2008, Volume 72, Issue 3, Pages 509–564
DOI: https://doi.org/10.1070/IM2008v072n03ABEH002410
(Mi im2600)
 

This article is cited in 19 scientific papers (total in 19 papers)

Asymptotics of solutions and modelling the problems of elasticity theory in domains with rapidly oscillating boundaries

S. A. Nazarov

Institute of Problems of Mechanical Engineering, Russian Academy of Sciences
References:
Abstract: We obtain explicit formulae for two terms of asymptotics of solutions of the Neumann and Dirichlet problems for the system of two-dimensional equations of elasticity theory in a domain with rapidly oscillating boundary and suggest an algorithm for constructing complete asymptotic expansions. We justify the asymptotic representations of solutions using Korn's inequality in singularly perturbed domains. We discuss two methods of modelling these problems of elasticity theory by constructing new, simpler, boundary-value problems whose solutions provide two-term asymptotics of solutions of the original problems. The first method is based on the introduction of the so-called wall laws containing a small parameter in the higher derivatives. The second method is based on the use of the concept of a smooth image of the singularly perturbed boundary.
Received: 19.12.2006
Bibliographic databases:
UDC: 517.946+539.3
Language: English
Original paper language: Russian
Citation: S. A. Nazarov, “Asymptotics of solutions and modelling the problems of elasticity theory in domains with rapidly oscillating boundaries”, Izv. Math., 72:3 (2008), 509–564
Citation in format AMSBIB
\Bibitem{Naz08}
\by S.~A.~Nazarov
\paper Asymptotics of solutions and modelling the problems of elasticity theory in domains with rapidly oscillating boundaries
\jour Izv. Math.
\yr 2008
\vol 72
\issue 3
\pages 509--564
\mathnet{http://mi.mathnet.ru/eng/im2600}
\crossref{https://doi.org/10.1070/IM2008v072n03ABEH002410}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2432755}
\zmath{https://zbmath.org/?q=an:1159.35071}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008IzMat..72..509N}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000257879200005}
\elib{https://elibrary.ru/item.asp?id=11570604}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-48749123013}
Linking options:
  • https://www.mathnet.ru/eng/im2600
  • https://doi.org/10.1070/IM2008v072n03ABEH002410
  • https://www.mathnet.ru/eng/im/v72/i3/p103
  • This publication is cited in the following 19 articles:
    1. D. I. Borisov, R. R. Suleimanov, “Operator estimates for elliptic equations in multidimensional domains with strongly curved boundaries”, Sb. Math., 216:1 (2025), 25–53  mathnet  crossref  crossref
    2. S. A. Nazarov, J. Taskinen, “Model of a Plane Strain-State of a Two-Dimensional Plate with Small Periodic Areas of Fixed Edge”, J Math Sci, 283:4 (2024), 586  crossref
    3. D. Gómez, S. A. Nazarov, M.-E. Pérez-Martínez, “Pointwise Fixation along the Edge of a Kirchhoff Plate”, J Math Sci, 277:4 (2023), 545  crossref
    4. Giuseppe Cardone, Sergey A. Nazarov, Jari Taskinen, “Asymptotic Expansions of Solutions to the Poisson Equation with Alternating Boundary Conditions on an Open Arc”, SIAM J. Math. Anal., 55:6 (2023), 6940  crossref
    5. S. A. Nazarov, “Parasitic eigenvalues of spectral problems for the Laplacian with third-type boundary conditions”, Comput. Math. Math. Phys., 63:7 (2023), 1237–1253  mathnet  mathnet  crossref  crossref
    6. S. A. Nazarov, Ya. Taskinen, “Model ploskogo deformirovannogo sostoyaniya dvumernoi plastiny s melkimi pochti periodicheskimi uchastkami zaschemleniya kraya”, Matematicheskie voprosy teorii rasprostraneniya voln. 51, Zap. nauchn. sem. POMI, 506, POMI, SPb., 2021, 130–174  mathnet
    7. S. A. Nazarov, “Homogenization of Kirchhoff plates joined by rivets which are modeled by the Sobolev point conditions”, St. Petersburg Math. J., 32:2 (2021), 307–348  mathnet  crossref  isi  elib
    8. D. Gomes, S. A. Nazarov, M.-E. Peres, “Tochechnoe kreplenie plastiny Kirkhgofa vdol ee kromki”, Matematicheskie voprosy teorii rasprostraneniya voln. 50, Posvyaschaetsya devyanostoletiyu Vasiliya Mikhailovicha BABIChA, Zap. nauchn. sem. POMI, 493, POMI, SPb., 2020, 107–137  mathnet
    9. Gomez D., Nazarov S.A., Perez-Martinez M.-E., “Asymptotics For Spectral Problems With Rapidly Alternating Boundary Conditions on a Strainer Winkler Foundation”, J. Elast., 142:1 (2020), 89–120  crossref  mathscinet  isi
    10. Delfina Gómez, Sergey A. Nazarov, Maria-Eugenia Pérez-Martínez, Computational and Analytic Methods in Science and Engineering, 2020, 127  crossref
    11. Gomez D. Nazarov S.A. Perez M.E., “Homogenization of Winkler-Steklov Spectral Conditions in Three-Dimensional Linear Elasticity”, Z. Angew. Math. Phys., 69:2 (2018), 35  crossref  mathscinet  zmath  isi  scopus
    12. Cardone G., “Waveguides With Fast Oscillating Boundary”, Nanosyst.-Phys. Chem. Math., 8:2 (2017), 160–165  crossref  mathscinet  isi
    13. S. A. Nazarov, “Bounded solutions in a T-shaped waveguide and the spectral properties of the Dirichlet ladder”, Comput. Math. Math. Phys., 54:8 (2014), 1261–1279  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    14. Denis Borisov, Giuseppe Cardone, Luisa Faella, Carmen Perugia, “Uniform resolvent convergence for strip with fast oscillating boundary”, Journal of Differential Equations, 255:12 (2013), 4378–4402  crossref  mathscinet  zmath  isi  scopus
    15. S. A. Nazarov, “Nonreflecting distortions of an isotropic strip clamped between rigid punches”, Comput. Math. Math. Phys., 53:10 (2013), 1512–1522  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    16. D. Gómez, S. A. Nazarov, E. Pérez, Integral Methods in Science and Engineering, 2011, 159  crossref
    17. V. A. Kozlov, S. A. Nazarov, “The spectrum asymptotics for the Dirichlet problem in the case of the biharmonic operator in a domain with highly indented boundary”, St. Petersburg Math. J., 22:6 (2011), 941–983  mathnet  crossref  mathscinet  zmath  isi
    18. Nazarov S.A., Sokolowski J., Specovius-Neugebauer M., “Polarization matrices in anisotropic heterogeneous elasticity”, Asymptot. Anal., 68:4 (2010), 189–221  mathscinet  zmath  isi  elib
    19. S. A. Nazarov, “Asymptotic modeling of a problem with contrasting stiffness”, J. Math. Sci. (N. Y.), 167:5 (2010), 692–712  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:811
    Russian version PDF:207
    English version PDF:54
    References:137
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025