Loading [MathJax]/jax/output/SVG/config.js
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2010, Volume 22, Issue 6, Pages 127–184 (Mi aa1217)  

This article is cited in 17 scientific papers (total in 17 papers)

Research Papers

The spectrum asymptotics for the Dirichlet problem in the case of the biharmonic operator in a domain with highly indented boundary

V. A. Kozlova, S. A. Nazarovb

a Department of Mathematics, Linkopings Universitet, Linkoping, Sweden
b Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg, Russia
References:
Abstract: Asymptotic expansions are constructed for the eigenvalues of the Dirichlet problem for the biharmonic operator in a domain with highly indented and rapidly oscillating boundary (the Kirchhoff model of a thin plate). The asymptotic constructions depend heavily on the quantity $\gamma$ that describes the depth $O(\varepsilon^\gamma)$ of irregularity ($\varepsilon$ is the oscillation period). The resulting formulas relate the eigenvalues in domains with close irregular boundaries and make it possible, in particular, to control the order of perturbation and to find conditions ensuring the validity (or violation) of the classical Hadamard formula.
Keywords: biharmonic operator, Dirichlet problem, asymptotic expansions of eigenvalues, eigenoscillations of the Kirchhoff plate, rapid oscillation and nonregular perturbation of the boundary.
Received: 15.06.2010
English version:
St. Petersburg Mathematical Journal, 2011, Volume 22, Issue 6, Pages 941–983
DOI: https://doi.org/10.1090/S1061-0022-2011-01178-1
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. A. Kozlov, S. A. Nazarov, “The spectrum asymptotics for the Dirichlet problem in the case of the biharmonic operator in a domain with highly indented boundary”, Algebra i Analiz, 22:6 (2010), 127–184; St. Petersburg Math. J., 22:6 (2011), 941–983
Citation in format AMSBIB
\Bibitem{KozNaz10}
\by V.~A.~Kozlov, S.~A.~Nazarov
\paper The spectrum asymptotics for the Dirichlet problem in the case of the biharmonic operator in a~domain with highly indented boundary
\jour Algebra i Analiz
\yr 2010
\vol 22
\issue 6
\pages 127--184
\mathnet{http://mi.mathnet.ru/aa1217}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2760089}
\zmath{https://zbmath.org/?q=an:1232.31001}
\transl
\jour St. Petersburg Math. J.
\yr 2011
\vol 22
\issue 6
\pages 941--983
\crossref{https://doi.org/10.1090/S1061-0022-2011-01178-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000297091500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871457662}
Linking options:
  • https://www.mathnet.ru/eng/aa1217
  • https://www.mathnet.ru/eng/aa/v22/i6/p127
  • This publication is cited in the following 17 articles:
    1. D. I. Borisov, R. R. Suleimanov, “Operator estimates for elliptic equations in multidimensional domains with strongly curved boundaries”, Sb. Math., 216:1 (2025), 25–53  mathnet  crossref  crossref
    2. D. I. Borisov, R. R. Suleimanov, “Operator Estimates for Problems in Domains with Singularly Curved Boundary: Dirichlet and Neumann Conditions”, Dokl. Math., 2024  crossref
    3. Siwar Saidani, Adel Jawahdou, “Asymptotic behaviors for the eigenvalues of the Schrödinger equation”, Applicable Analysis, 2024, 1  crossref
    4. Ahlem Jaouabi, Abdessatar Khelifi, “Asymptotic behavior for eigenvalues and eigenfunctions associated to Stokes operator in the presence of a rapidly oscillating boundary”, Math Methods in App Sciences, 47:4 (2024), 1915  crossref
    5. Vladimir Lotoreichik, “Improved inequalities between Dirichlet and Neumann eigenvalues of the biharmonic operator”, Proc. Amer. Math. Soc., 2024  crossref
    6. D. I. Borisov, R. R. Suleimanov, “On operator estimates for elliptic operators with mixed boundary conditions in two-dimensional domains with rapidly oscillating boundary”, Math. Notes, 116:2 (2024), 182–199  mathnet  crossref  crossref
    7. Saoussen Boujemaa, Abdessatar Khelifi, “Asymptotic expansion for solution of Maxwell equation in domain with highly oscillating boundary”, Z Angew Math Mech, 103:10 (2023)  crossref
    8. Siwar Saidani, Abdessatar Khelifi, “Eigenoscillations of the Maxwell equation in a domain with oscillating boundary”, Complex Variables and Elliptic Equations, 2023, 1  crossref
    9. Khelifi A., Jaouabi A., “On the Asymptotic Formulas For Perturbations in the Eigenvalues of the Stokes Equations Due to the Presence of Small Deformable Inclusions”, J. Appl. Anal., 28:1 (2022), 149–164  crossref  mathscinet  isi
    10. Kozlov V., Thim J., “Hadamard Asymptotics For Eigenvalues of the Dirichlet Laplacian”, J. Math. Pures Appl., 140 (2020), 67–88  crossref  mathscinet  isi  scopus
    11. Cardone G., “Waveguides With Fast Oscillating Boundary”, Nanosyst.-Phys. Chem. Math., 8:2 (2017), 160–165  crossref  mathscinet  isi
    12. Kozlov V., Thim J., “Hadamard type asymptotics for eigenvalues of the Neumann problem for elliptic operators”, J. Spectr. Theory, 6:1 (2016), 99–135  crossref  mathscinet  zmath  isi  elib  scopus
    13. Haddad J., Montenegro M., “on Differentiability of Eigenvalues of Second Order Elliptic Operators on Non-Smooth Domains”, J. Differ. Equ., 259:1 (2015), 408–421  crossref  mathscinet  zmath  isi  elib  scopus
    14. Thim J., “Asymptotics of Hadamard Type For Eigenvalues of the Neumann Problem on C-1-Domains For Elliptic Operators”, Anal. PDE, 8:7 (2015), 1695–1706  crossref  mathscinet  zmath  isi  elib  scopus
    15. Chechkina A., Pankratova I., Pettersson K., “Spectral Asymptotics For a Singularly Perturbed Fourth Order Locally Periodic Elliptic Operator”, Asymptotic Anal., 93:1-2 (2015), 141–160  crossref  mathscinet  zmath  isi  elib  scopus
    16. Borisov D. Cardone G. Faella L. Perugia C., “Uniform Resolvent Convergence for Strip with Fast Oscillating Boundary”, J. Differ. Equ., 255:12 (2013), 4378–4402  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    17. Kozlov V., “Domain Dependence of Eigenvalues of Elliptic Type Operators”, Math. Ann., 357:4 (2013), 1509–1539  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:694
    Full-text PDF :190
    References:117
    First page:24
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025