Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1982, Volume 18, Issue 1, Pages 99–123
DOI: https://doi.org/10.1070/IM1982v018n01ABEH001385
(Mi im1550)
 

This article is cited in 43 scientific papers (total in 43 papers)

On the classification of arithmetic groups generated by reflections in Lobachevsky spaces

V. V. Nikulin
References:
Abstract: It is proved that there do not exist discrete arithmetic groups generated by reflections in Lobachevsky spaces if the dimension of the Lobachevsky space is greater than 15 and the degree of the ground field is sufficiently large.
Bibliography: 24 titles.
Received: 08.07.1980
Bibliographic databases:
Document Type: Article
UDC: 519.46+511.4
MSC: Primary 51F15, 20H15; Secondary 20F32, 51M10, 51M20, 52A25
Language: English
Original paper language: Russian
Citation: V. V. Nikulin, “On the classification of arithmetic groups generated by reflections in Lobachevsky spaces”, Math. USSR-Izv., 18:1 (1982), 99–123
Citation in format AMSBIB
\Bibitem{Nik81}
\by V.~V.~Nikulin
\paper On the classification of arithmetic groups generated by reflections in Lobachevsky spaces
\jour Math. USSR-Izv.
\yr 1982
\vol 18
\issue 1
\pages 99--123
\mathnet{http://mi.mathnet.ru/eng/im1550}
\crossref{https://doi.org/10.1070/IM1982v018n01ABEH001385}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=607579}
\zmath{https://zbmath.org/?q=an:0477.22008}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981NH92800006}
Linking options:
  • https://www.mathnet.ru/eng/im1550
  • https://doi.org/10.1070/IM1982v018n01ABEH001385
  • https://www.mathnet.ru/eng/im/v45/i1/p113
  • This publication is cited in the following 43 articles:
    1. Amanda Burcroff, “Near classification of compact hyperbolic Coxeter d-polytopes with d+4 facets and related dimension bounds”, European Journal of Combinatorics, 120 (2024), 103957  crossref
    2. Mezzedimi G., “K3 Surfaces of Zero Entropy Admitting An Elliptic Fibration With Only Irreducible Fibers”, J. Algebra, 587 (2021), 344–389  crossref  isi
    3. N. V. Bogachev, “Classification of (1,2)-reflective anisotropic hyperbolic lattices of rank 4”, Izv. Math., 83:1 (2019), 1–19  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. Gritsenko V. Nikulin V.V., “Lorentzian Kac-Moody Algebras With Weyl Groups of 2-Reflections”, Proc. London Math. Soc., 116:3 (2018), 485–533  crossref  isi
    5. Mark A., “The Classification of Rank 3 Reflective Hyperbolic Lattices Over Z[Root 2]”, Math. Proc. Camb. Philos. Soc., 164:2 (2018), 221–257  crossref  isi
    6. Linowitz B., “Bounds For Arithmetic Hyperbolic Reflection Groups in Dimension 2”, Transform. Groups, 23:3 (2018), 743–753  crossref  isi
    7. V. A. Gritsenko, “Reflective modular forms and applications”, Russian Math. Surveys, 73:5 (2018), 797–864  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. Turkalj I., “Reflective Lorentzian Lattices of Signature (5,1)”, J. Algebra, 513 (2018), 516–544  crossref  mathscinet  zmath  isi  scopus
    9. N. V. Bogachev, “Reflective anisotropic hyperbolic lattices of rank 4”, Russian Math. Surveys, 72:1 (2017), 179–181  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. V. M. Buchstaber, N. Yu. Erokhovets, M. Masuda, T. E. Panov, S. Park, “Cohomological rigidity of manifolds defined by 3-dimensional polytopes”, Russian Math. Surveys, 72:2 (2017), 199–256  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. A. Yu. Vesnin, “Right-angled polyhedra and hyperbolic 3-manifolds”, Russian Math. Surveys, 72:2 (2017), 335–374  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    12. Belolipetsky M., “Arithmetic hyperbolic reflection groups”, Bull. Amer. Math. Soc., 53:3 (2016), 437–475  crossref  mathscinet  zmath  isi  elib  scopus
    13. Nonaka J., “The Number of Cusps of Right-angled Polyhedra in Hyperbolic Spaces”, Tokyo J. Math., 38:2 (2015), 539–560  crossref  mathscinet  zmath  isi  elib
    14. Belolipetsky M. Linowitz B., “On Fields of Definition of Arithmetic Kleinian Reflection Groups II”, Int. Math. Res. Notices, 2014, no. 9, 2559–2571  crossref  isi
    15. V.V.. Nikulin, “Elliptic Fibrations On K3 Surfaces”, Proceedings of the Edinburgh Mathematical Society, 2013, 1  crossref
    16. Mark Pollicott, Richard Sharp, “Correlations of Length Spectra for Negatively Curved Manifolds”, Commun. Math. Phys, 2012  crossref
    17. Maclachlan C., “Bounds for discrete hyperbolic arithmetic reflection groups in dimension 2”, Bull London Math Soc, 43:1 (2011), 111–123  crossref  isi
    18. Viacheslav V. Nikulin, “Self-correspondences of K3 surfaces via moduli of sheaves and arithmetic hyperbolic reflection groups”, Proc. Steklov Inst. Math., 273 (2011), 229–237  mathnet  crossref  mathscinet  zmath  isi  elib
    19. V. V. Nikulin, “The transition constant for arithmetic hyperbolic reflection groups”, Izv. Math., 75:5 (2011), 971–1005  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    20. Maclachlan C., “Commensurability classes of discrete arithmetic hyperbolic groups”, Groups Geom Dyn, 5:4 (2011), 767–785  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:827
    Russian version PDF:237
    English version PDF:49
    References:91
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025