Loading [MathJax]/jax/output/SVG/config.js
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2018, Volume 73, Issue 5, Pages 797–864
DOI: https://doi.org/10.1070/RM9853
(Mi rm9853)
 

This article is cited in 21 scientific papers (total in 21 papers)

Reflective modular forms and applications

V. A. Gritsenkoabc

a Laboratoire Paul Painlevé, Université de Lille 1, Villeneuve d'Ascq, France
b Institut Universitaire de France, Paris, France
c National Research University Higher School of Economics
References:
Abstract: The reflective modular forms of orthogonal type are fundamental automorphic objects generalizing the classical Dedekind eta-function. This article describes two methods for constructing such modular forms in terms of Jacobi forms: automorphic products and Jacobi lifting. In particular, it is proved that the first non-zero Fourier–Jacobi coefficient of the Borcherds modular form $\Phi_{12}$ (the generating function of the so-called Fake Monster Lie Algebra) in any of the 23 one-dimensional cusps coincides with the Kac–Weyl denominator function of the affine algebra of the root system of the corresponding Niemeier lattice. This article gives a new simple construction of the automorphic discriminant of the moduli space of Enriques surfaces as a Jacobi lifting of the product of eight theta-functions and considers three towers of reflective modular forms. One of them, the tower of $D_8$, gives a solution to a problem of Yoshikawa (2009) concerning the construction of Lorentzian Kac–Moody algebras from the automorphic discriminants connected with del Pezzo surfaces and analytic torsions of Calabi–Yau manifolds. The article also formulates some conditions on sublattices, making it possible to produce families of ‘daughter’ reflective forms from a fixed modular form. As a result, nearly 100 such functions are constructed here.
Bibliography: 77 titles.
Keywords: automorphic forms, Borcherds products, Jacobi modular forms, Kac–Moody algebras, affine Lie algebras, moduli spaces, K3-surfaces, Calabi–Yau varieties, Kodaira dimension, Hecke eigenfunctions.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 14.641.31.0001
This work was supported by the Laboratory of Mirror Symmetry, National Research University, Higher School of Economics (Russian Federation government grant, ag. no. 14.641.31.0001).
Received: 14.08.2018
Bibliographic databases:
Document Type: Article
UDC: 511.38+515.178+512.554.32+512.721
Language: English
Original paper language: Russian
Citation: V. A. Gritsenko, “Reflective modular forms and applications”, Russian Math. Surveys, 73:5 (2018), 797–864
Citation in format AMSBIB
\Bibitem{Gri18}
\by V.~A.~Gritsenko
\paper Reflective modular forms and applications
\jour Russian Math. Surveys
\yr 2018
\vol 73
\issue 5
\pages 797--864
\mathnet{http://mi.mathnet.ru/eng/rm9853}
\crossref{https://doi.org/10.1070/RM9853}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3859399}
\zmath{https://zbmath.org/?q=an:1457.11043}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018RuMaS..73..797G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454772500002}
\elib{https://elibrary.ru/item.asp?id=35601279}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85060140294}
Linking options:
  • https://www.mathnet.ru/eng/rm9853
  • https://doi.org/10.1070/RM9853
  • https://www.mathnet.ru/eng/rm/v73/i5/p53
  • This publication is cited in the following 21 articles:
    1. Haowu Wang, Brandon Williams, “The fake monster algebra and singular Borcherds products”, Advances in Mathematics, 461 (2025), 110083  crossref
    2. Yota Maeda, “Reflective obstructions of unitary modular varieties”, Journal of Algebra, 647 (2024), 341  crossref  mathscinet
    3. Bing-Xin Lao, Ruben Minasian, “Consistency of eight-dimensional supergravities: anomalies, lattices and counterterms”, J. High Energ. Phys., 2024:6 (2024)  crossref
    4. Dmitrii Adler, Valery Gritsenko, “Modular differential equations of W(D)-invariant Jacobi forms”, Journal of Geometry and Physics, 2024, 105339  crossref
    5. Y. Maeda, Y. Odaka, “Fano Shimura varieties with mostly branched cusps”, Birational Geometry, Kähler–Einstein Metrics and Degenerations, Springer Proceedings in Mathematics & Statistics, 409, 2023, 633  crossref  mathscinet
    6. Haowu Wang, “2-Reflective Lattices of Signature (n, 2) withn≥8”, International Mathematics Research Notices, 2023:20 (2023), 17953  crossref
    7. K. Sun, H. Wang, “Conway invariant Jacobi forms on the Leech lattice”, Forum Mathematicum, 34:6 (2022), 1591–1619  crossref  mathscinet
    8. H. Wang, “Reflective modular forms on lattices of prime level”, Trans. Amer. Math. Soc., 375 (2022), 3451–3468  crossref  mathscinet
    9. X. Dai, K.-I. Yoshikawa, “Analytic torsion for log-Enriques surfaces and Borcherds product”, Forum of Mathematics, Sigma, 10 (2022), E77  crossref  mathscinet
    10. C. F. Cota, A. Klemm, T. Schimannek, “State counting on fibered cy 3-folds and the non-abelian weak gravity conjecture”, J. High Energy Phys., 2021, no. 5, 30  crossref  mathscinet  isi  scopus
    11. H. Wang, “Weyl invariant E-8 Jacobi forms”, Commun. Number Theory Phys., 15:3 (2021), 517–573  crossref  mathscinet  isi
    12. Dittmann M., Wang H., “Theta Blocks Related to Root Systems”, Math. Ann., 2021  crossref  mathscinet  isi  scopus
    13. H. Wang, “On some free algebras of orthogonal modular forms II”, Res. Number Theory, 7:3 (2021), 47  crossref  mathscinet  isi
    14. H. Wang, “The classification of free algebras of orthogonal modular forms”, Compos. Math., 157:9 (2021), 2026–2045  crossref  mathscinet  isi
    15. H. Wang, “Weyl invariant Jacobi forms: a new approach”, Adv. Math., 384 (2021), 107752  crossref  mathscinet  isi
    16. H. Wang, B. Williams, “On some free algebras of orthogonal modular forms”, Adv. Math., 373 (2020), 107332  crossref  mathscinet  zmath  isi
    17. V. Gritsenko, H. Wang, “Theta block conjecture for paramodular forms of weight 2”, Proc. Amer. Math. Soc., 148:5 (2020), 1863–1878  crossref  mathscinet  zmath  isi
    18. D. Adler, V. Gritsenko, “The d-8-tower of weak Jacobi forms and applications”, J. Geom. Phys., 150 (2020), 103616  crossref  mathscinet  zmath  isi
    19. Valery Gritsenko, Moscow Lectures, 5, Partition Functions and Automorphic Forms, 2020, 87  crossref
    20. V. A. Gritsenko, H. Wang, “Antisymmetric paramodular forms of weight 3”, Sb. Math., 210:12 (2019), 1702–1723  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:780
    Russian version PDF:105
    English version PDF:65
    References:79
    First page:36
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025