Loading [MathJax]/jax/output/SVG/config.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 1983, Volume 17, Issue 1, Pages 31–39 (Mi faa1510)  

This article is cited in 12 scientific papers (total in 12 papers)

Dynamical systems on the orbits of linear representations of Lie groups and the complete integrability of certain hydrodynamical systems

V. V. Trofimov, A. T. Fomenko
References:
Received: 06.06.1980
Revised: 25.05.1982
English version:
Functional Analysis and Its Applications, 1983, Volume 17, Issue 1, Pages 23–29
DOI: https://doi.org/10.1007/BF01083176
Bibliographic databases:
Document Type: Article
UDC: 513.944
Language: Russian
Citation: V. V. Trofimov, A. T. Fomenko, “Dynamical systems on the orbits of linear representations of Lie groups and the complete integrability of certain hydrodynamical systems”, Funktsional. Anal. i Prilozhen., 17:1 (1983), 31–39; Funct. Anal. Appl., 17:1 (1983), 23–29
Citation in format AMSBIB
\Bibitem{TroFom83}
\by V.~V.~Trofimov, A.~T.~Fomenko
\paper Dynamical systems on the orbits of linear representations of Lie groups and the complete integrability of certain hydrodynamical systems
\jour Funktsional. Anal. i Prilozhen.
\yr 1983
\vol 17
\issue 1
\pages 31--39
\mathnet{http://mi.mathnet.ru/faa1510}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=695094}
\zmath{https://zbmath.org/?q=an:0521.58031}
\transl
\jour Funct. Anal. Appl.
\yr 1983
\vol 17
\issue 1
\pages 23--29
\crossref{https://doi.org/10.1007/BF01083176}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983RF75400004}
Linking options:
  • https://www.mathnet.ru/eng/faa1510
  • https://www.mathnet.ru/eng/faa/v17/i1/p31
  • This publication is cited in the following 12 articles:
    1. Bolsinov A.V. Izosimov A.M. Tsonev D.M., “Finite-dimensional integrable systems: A collection of research problems”, J. Geom. Phys., 115 (2017), 2–15  crossref  mathscinet  isi
    2. M. V. Shamolin, “Integrable systems on the tangent bundle of a multi-dimensional sphere”, J. Math. Sci. (N. Y.), 234:4 (2018), 548–590  mathnet  crossref
    3. A. V. Bolsinov, “Argument shift method and sectional operators: applications to differential geometry”, J. Math. Sci., 225:4 (2017), 536–554  mathnet  crossref  mathscinet  elib
    4. M. V. Shamolin, “Some classes of integrable problems in spatial dynamics of a rigid body in a nonconservative force field”, J. Math. Sci. (N. Y.), 210:3 (2015), 292–330  mathnet  crossref
    5. V. V. Trofimov, M. V. Shamolin, “Geometric and dynamical invariants of integrable Hamiltonian and dissipative systems”, J. Math. Sci., 180:4 (2012), 365–530  mathnet  crossref  mathscinet
    6. M. M. Zhdanova, “Completely integrable Hamiltonian systems on semidirect sums of Lie algebras”, Sb. Math., 200:5 (2009), 629–659  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    7. A. S. Vorontsov, “Invariants of Lie algebras representable as semidirect sums with a commutative ideal”, Sb. Math., 200:8 (2009), 1149–1164  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. A. A. Korotkevich, “Integrable Hamiltonian systems on low-dimensional Lie algebras”, Sb. Math., 200:12 (2009), 1731–1766  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    9. D. V. Georgievskii, M. V. Shamolin, “Valerii Vladimirovich Trofimov”, Journal of Mathematical Sciences, 154:4 (2008), 449–461  mathnet  crossref  mathscinet  zmath
    10. I Mukhopadhyay, A R Chowdhury, “Sectional operators, new integrable systems and semidirect Lie algebras”, J. Phys. A: Math. Gen., 28:12 (1995), 3511  crossref
    11. V. V. Trofimov, A. T. Fomenko, “Liouville integrability of Hamiltonian systems on Lie algebras”, Russian Math. Surveys, 39:2 (1984), 1–67  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    12. V. V. Trofimov, “Extensions of Lie algebras and Hamiltonian systems”, Math. USSR-Izv., 23:3 (1984), 561–578  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:554
    Full-text PDF :155
    References:86
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025