Abstract:
This paper contains a systematic exposition of some results on the equations of motion of a dynamically symmetric $n$-dimensional rigid body in a nonconservative field of forces. Similar bodies are considered in the dynamics of actual rigid bodies interacting with a resisting medium under the conditions of jet flow past the body with a nonconservative following force acting on the body in such a way that its characteristic point has a constant velocity, which means that the system has a nonintegrable servo-constraint.
Citation:
M. V. Shamolin, “Integrable systems on the tangent bundle of a multi-dimensional sphere”, Tr. Semim. im. I. G. Petrovskogo, 31, 2016, 257–323; J. Math. Sci. (N. Y.), 234:4 (2018), 548–590
\Bibitem{Sha16}
\by M.~V.~Shamolin
\paper Integrable systems on the tangent bundle of a multi-dimensional sphere
\serial Tr. Semim. im. I.~G.~Petrovskogo
\yr 2016
\vol 31
\pages 257--323
\mathnet{http://mi.mathnet.ru/tsp98}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 234
\issue 4
\pages 548--590
\crossref{https://doi.org/10.1007/s10958-018-4028-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85052898457}
Linking options:
https://www.mathnet.ru/eng/tsp98
https://www.mathnet.ru/eng/tsp/v31/p257
This publication is cited in the following 2 articles: