Loading [MathJax]/jax/output/SVG/config.js
Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1984, Volume 23, Issue 3, Pages 561–578
DOI: https://doi.org/10.1070/IM1984v023n03ABEH001786
(Mi im1465)
 

This article is cited in 11 scientific papers (total in 11 papers)

Extensions of Lie algebras and Hamiltonian systems

V. V. Trofimov
References:
Abstract: An extension $\Omega(G)$ is constructed for a Lie algebra $G$, and an algorithm is proposed which converts functions in involution on $G^*$ into functions in involution on $\Omega(G)^*$. Operators of “rigid body” type are constructed for $\Omega(G)$ in the case of a semisimple Lie algebra $G$; complete integrability is proved for the Euler equations on $\Omega(G)^*$ with these operators.
Bibliography: 21 titles.
Received: 16.02.1981
Bibliographic databases:
UDC: 513.944
MSC: Primary 58F07; Secondary 17B99
Language: English
Original paper language: Russian
Citation: V. V. Trofimov, “Extensions of Lie algebras and Hamiltonian systems”, Math. USSR-Izv., 23:3 (1984), 561–578
Citation in format AMSBIB
\Bibitem{Tro83}
\by V.~V.~Trofimov
\paper Extensions of Lie algebras and Hamiltonian systems
\jour Math. USSR-Izv.
\yr 1984
\vol 23
\issue 3
\pages 561--578
\mathnet{http://mi.mathnet.ru/eng/im1465}
\crossref{https://doi.org/10.1070/IM1984v023n03ABEH001786}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=727757}
\zmath{https://zbmath.org/?q=an:0578.58023|0547.58024}
Linking options:
  • https://www.mathnet.ru/eng/im1465
  • https://doi.org/10.1070/IM1984v023n03ABEH001786
  • https://www.mathnet.ru/eng/im/v47/i6/p1303
  • This publication is cited in the following 11 articles:
    1. D. V. Berzin, “O tenzornom rasshirenii odnoi klassicheskoi gamiltonovoi sistemy”, Mezhdunar. nauch.-issled. zhurn., 2014, no. 4(23), 8–9  mathnet
    2. D. V. Berzin, “O bifurkatsiyakh v tenzornom rasshirenii klassicheskoi zadachi Eilera”, Mezhdunar. nauch.-issled. zhurn., 2014, no. 7(26), 5–6  mathnet
    3. D. V. Berzin, “Osobennosti “tsentr” i “sedlo” v tenzornykh rasshireniyakh nekotorykh gamiltonovykh sistem”, Mezhdunar. nauch.-issled. zhurn., 2013, no. 2(9), 4–4  mathnet
    4. D. V. Berzin, “Perestroiki “tsentr” i “sedlo” v tenzornom rasshirenii zadachi Eilera”, Mezhdunar. nauch.-issled. zhurn., 2013, no. 3(10), 19–20  mathnet
    5. V. V. Trofimov, M. V. Shamolin, “Geometric and dynamical invariants of integrable Hamiltonian and dissipative systems”, J. Math. Sci., 180:4 (2012), 365–530  mathnet  crossref  mathscinet
    6. D. V. Georgievskii, M. V. Shamolin, “Valerii Vladimirovich Trofimov”, Journal of Mathematical Sciences, 154:4 (2008), 449–461  mathnet  crossref  mathscinet  zmath
    7. T. L. Melekhina, “Construction of canonical coordinates on the orbits of the coadjoint representation of tensor extensions of Lie groups”, Math. Notes, 64:2 (1998), 272–275  mathnet  crossref  crossref  mathscinet  zmath  isi
    8. M. A. Ramazanov, “Canonical coordinates on the orbits of the co-adjoint representation of tensor extensions of special nilpotent Lie groups of dimension nine”, Russian Math. Surveys, 51:1 (1996), 160–161  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    9. T. L. Mordasheva, “Canonical coordinates on orbits of a co-adjoint representation of certain semidirect products of Lie groups”, Russian Math. Surveys, 50:6 (1995), 1282–1283  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    10. V. V. Trofimov, “Canonical coordinates on orbits of the coadjoint representation of tensorial extensions of Lie groups”, Russian Math. Surveys, 49:1 (1994), 251–253  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    11. V. V. Trofimov, A. T. Fomenko, “Liouville integrability of Hamiltonian systems on Lie algebras”, Russian Math. Surveys, 39:2 (1984), 1–67  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:352
    Russian version PDF:110
    English version PDF:19
    References:77
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025