Abstract:
Together with the classical plane billiards, topological billiards can be considered, where the motion occurs on a locally flat surface obtained by isometrically gluing together several plane domains along their boundaries, which are arcs of confocal quadrics. A point moves inside each of the domains along straight line segments; when it reaches the boundary of a domain, it passes to another domain. Previously, the author gave a Liouville classification of all topological billiards obtained by gluing along convex boundaries. In the present paper, all topological integrable billiards obtained by gluing along convex or nonconvex boundaries from elementary billiards bounded by arcs of confocal quadrics are classified. For some of such nonconvex topological billiards, the Fomenko–Zieschang invariants (marked molecules W∗W∗) for Liouville equivalence are calculated.
This publication is cited in the following 9 articles:
G. V. Belozerov, A. T. Fomenko, “Orbital invariants of billiards and linearly integrable geodesic flows”, Sb. Math., 215:5 (2024), 573–611
G. V. Belozerov, “Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space”, Sb. Math., 213:2 (2022), 129–160
A. T. Fomenko, V. V. Vedyushkina, “Evolutionary force billiards”, Izv. Math., 86:5 (2022), 943–979
A. T. Fomenko, V. V. Vedyushkina, V. N. Zav'yalov, “Liouville Foliations of Topological Billiards with Slipping”, Russ. J. Math. Phys., 28:1 (2021), 37
V. V. Vedyushkina, “Integrable billiard systems realize toric foliations on lens spaces and the 3-torus”, Sb. Math., 211:2 (2020), 201–225
A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrability in geometry and physics. New scope and new potential”, Moscow University Mathematics Bulletin, 74:3 (2019), 98–107
V. V. Vedyushkina, “The Fomenko–Zieschang invariants of nonconvex topological billiards”, Sb. Math., 210:3 (2019), 310–363
V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards”, Izv. Math., 83:6 (2019), 1137–1173
Y. V. Shestopalov, E. Smolkin, E. Kuzmina, “Spectra of Nonselfadjoint Eigenvalue Problems for Elliptic Systems in Mathematical Models of the Wave Propagation in Open Waveguides”, Lobachevskii J Math, 39:8 (2018), 1117