Doklady Akademii Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. Akad. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Akademii Nauk, 2018, Volume 478, Number 1, Pages 7–11
DOI: https://doi.org/10.7868/S0869565218010012
(Mi dan47509)
 

This article is cited in 9 scientific papers (total in 9 papers)

The Liouville foliation of nonconvex topological billiards

V. V. Vedyushkina

Moscow State University
Citations (9)
Abstract: Together with the classical plane billiards, topological billiards can be considered, where the motion occurs on a locally flat surface obtained by isometrically gluing together several plane domains along their boundaries, which are arcs of confocal quadrics. A point moves inside each of the domains along straight line segments; when it reaches the boundary of a domain, it passes to another domain. Previously, the author gave a Liouville classification of all topological billiards obtained by gluing along convex boundaries. In the present paper, all topological integrable billiards obtained by gluing along convex or nonconvex boundaries from elementary billiards bounded by arcs of confocal quadrics are classified. For some of such nonconvex topological billiards, the Fomenko–Zieschang invariants (marked molecules WW) for Liouville equivalence are calculated.
English version:
Doklady Mathematics, 2018, Volume 97, Issue 1, Pages 1–5
DOI: https://doi.org/10.1134/S1064562418010052
Bibliographic databases:
Document Type: Article
UDC: 517.938.5
Language: Russian
Linking options:
  • https://www.mathnet.ru/eng/dan47509
  • This publication is cited in the following 9 articles:
    1. G. V. Belozerov, A. T. Fomenko, “Orbital invariants of billiards and linearly integrable geodesic flows”, Sb. Math., 215:5 (2024), 573–611  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. G. V. Belozerov, “Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space”, Sb. Math., 213:2 (2022), 129–160  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. A. T. Fomenko, V. V. Vedyushkina, “Evolutionary force billiards”, Izv. Math., 86:5 (2022), 943–979  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. A. T. Fomenko, V. V. Vedyushkina, V. N. Zav'yalov, “Liouville Foliations of Topological Billiards with Slipping”, Russ. J. Math. Phys., 28:1 (2021), 37  crossref
    5. V. V. Vedyushkina, “Integrable billiard systems realize toric foliations on lens spaces and the 3-torus”, Sb. Math., 211:2 (2020), 201–225  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrability in geometry and physics. New scope and new potential”, Moscow University Mathematics Bulletin, 74:3 (2019), 98–107  mathnet  crossref  mathscinet  zmath  isi
    7. V. V. Vedyushkina, “The Fomenko–Zieschang invariants of nonconvex topological billiards”, Sb. Math., 210:3 (2019), 310–363  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards”, Izv. Math., 83:6 (2019), 1137–1173  mathnet  mathnet  crossref  crossref  isi  scopus
    9. Y. V. Shestopalov, E. Smolkin, E. Kuzmina, “Spectra of Nonselfadjoint Eigenvalue Problems for Elliptic Systems in Mathematical Models of the Wave Propagation in Open Waveguides”, Lobachevskii J Math, 39:8 (2018), 1117  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:101
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025