Abstract:
Two problems of selecting a subset of $m$ vectors with the maximum norm of sum from a set of $n$ vectors in Euclidean space $\mathbb R^k$ is considered. It is supposed that the coordinates of the vectors are integer. Using the dynamic programming technique new optimal algorithms are constructed. They have pseudopolynomial complexity, when the dimension $k$ of the vector space is fixed. New algorithms have certain advantages (with respect to earlier known algorithms): the vector subset problem can be solved faster, if $m<(k/2)^k$, and the time complexity is $k^{k-1}$ times less for the problem with an additional restriction on the order of vectors independently of $m$. Bibl. 5.
Citation:
E. Kh. Gimadi, Yu. V. Glazkov, I. A. Rykov, “The vector subset problem with integer coordinates in Euclidean space with the maximum sum”, Diskretn. Anal. Issled. Oper., 15:4 (2008), 30–43; J. Appl. Industr. Math., 3:3 (2009), 343–352
\Bibitem{GimGlaRyk08}
\by E.~Kh.~Gimadi, Yu.~V.~Glazkov, I.~A.~Rykov
\paper The vector subset problem with integer coordinates in Euclidean space with the maximum sum
\jour Diskretn. Anal. Issled. Oper.
\yr 2008
\vol 15
\issue 4
\pages 30--43
\mathnet{http://mi.mathnet.ru/da539}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2543598}
\zmath{https://zbmath.org/?q=an:1249.90171}
\transl
\jour J. Appl. Industr. Math.
\yr 2009
\vol 3
\issue 3
\pages 343--352
\crossref{https://doi.org/10.1134/S1990478909030041}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70349150916}
Linking options:
https://www.mathnet.ru/eng/da539
https://www.mathnet.ru/eng/da/v15/i4/p30
This publication is cited in the following 13 articles:
A. V. Kel'manov, A. V. Motkova, V. V. Shenmaier, “Approximation scheme for the problem of weighted 2-partitioning with a fixed center of one cluster”, Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), 136–145
V. V. Shenmaier, “An exact algorithm for finding a vector subset with the longest sum”, J. Appl. Industr. Math., 11:4 (2017), 584–593
Kel'manov A. Khandeev V., “Some Algorithms With Guaranteed Accuracy For 2-Clustering Problems With Given Center of One Cluster”, 2017 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), IEEE, 2017, 91–93
Eremeev A.V. Kel'manov A.V. Pyatkin A.V., “On Complexity of Searching a Subset of Vectors With Shortest Average Under a Cardinality Restriction”, Analysis of Images, Social Networks and Texts, AIST 2016, Communications in Computer and Information Science, 661, ed. Ignatov D. Khachay M. Labunets V. Loukachevitch N. Nikolenko S. Panchenko A. Savchenko A. Vorontsov K., Springer International Publishing Ag, 2017, 51–57
A. V. Kel'manov, S. A. Khamidullin, V. I. Khandeev, “Fully polynomial-time approximation scheme for a sequence $2$-clustering problem”, J. Appl. Industr. Math., 10:2 (2016), 209–219
A. V. Kel'manov, A. V. Motkova, “Exact pseudopolinomial algorithms for a balanced $2$-clustering problem”, J. Appl. Industr. Math., 10:3 (2016), 349–355
A. V. Eremeev, A. V. Kel'manov, A. V. Pyatkin, “On the complexity and approximability of some Euclidean optimal summing problems”, Comput. Math. Math. Phys., 56:10 (2016), 1813–1817
Edward Gimadi, Ivan Rykov, Lecture Notes in Computer Science, 9869, Discrete Optimization and Operations Research, 2016, 148
A. V. Eremeev, A. V. Kel'manov, A. V. Pyatkin, “On the complexity of some Euclidean optimal summing problems”, Dokl. Math., 93:3 (2016), 286
A. V. Kel'manov, V. I. Khandeev, “An exact pseudopolynomial algorithm for a bi-partitioning problem”, J. Appl. Industr. Math., 9:4 (2015), 497–502
A. V. Dolgushev, A. V. Kel'manov, V. V. Shenmaier, “Polynomial-time approximation scheme for a problem of partitioning a finite set into two clusters”, Proc. Steklov Inst. Math. (Suppl.), 295, suppl. 1 (2016), 47–56
A. V. Dolgushev, A. V. Kel'manov, “An approximation algorithm for one problem of cluster analysis”, J. Appl. Industr. Math., 5:4 (2011), 551–558
E. Kh. Gimadi, A. V. Pyatkin, I. A. Rykov, “On polynomial solvability of some vector subset problems in Euclidean space with fixed dimension”, J. Appl. Industr. Math., 4:1 (2010), 48–53