Abstract:
Problems of choosing vectors in the multidimensional Euclidean space $\mathbb R^k$ are considered. The maximum norm of sum or the averaged square of the norm are considered as the problem objective. We present combinatorial algorithms with time complexity $O(k^2n^{2k})$. Thereby it is shown that the considered problems are polynomially solvable for fixed dimension of space $\mathbb R^k$. Bibl. 6.
Citation:
E. Kh. Gimadi, A. V. Pyatkin, I. A. Rykov, “On polynomial solvability of some vector subset problems in Euclidean space with fixed dimension”, Diskretn. Anal. Issled. Oper., 15:6 (2008), 11–19; J. Appl. Industr. Math., 4:1 (2010), 48–53
\Bibitem{GimPyaRyk08}
\by E.~Kh.~Gimadi, A.~V.~Pyatkin, I.~A.~Rykov
\paper On polynomial solvability of some vector subset problems in Euclidean space with fixed dimension
\jour Diskretn. Anal. Issled. Oper.
\yr 2008
\vol 15
\issue 6
\pages 11--19
\mathnet{http://mi.mathnet.ru/da553}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2543143}
\zmath{https://zbmath.org/?q=an:1249.90342}
\transl
\jour J. Appl. Industr. Math.
\yr 2010
\vol 4
\issue 1
\pages 48--53
\crossref{https://doi.org/10.1134/S1990478910010084}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77949881390}
Linking options:
https://www.mathnet.ru/eng/da553
https://www.mathnet.ru/eng/da/v15/i6/p11
This publication is cited in the following 25 articles:
Artem Pyatkin, “1-mean and 1-medoid 2-clustering problem with arbitrary cluster sizes: Complexity and approximation”, Yugosl J Oper Rres, 33:1 (2023), 59
Ji Y. Ohsawa Yu., 2021 International Joint Conference on Neural Networks (Ijcnn), IEEE International Joint Conference on Neural Networks (Ijcnn), IEEE, 2021
Artem V. Pyatkin, Communications in Computer and Information Science, 1476, Mathematical Optimization Theory and Operations Research: Recent Trends, 2021, 248
Artem V. Pyatkin, Communications in Computer and Information Science, 1275, Mathematical Optimization Theory and Operations Research, 2020, 70
Kel'manov V A. Panasenko V A. Khandeev I V., “Exact Algorithms of Search For a Cluster of the Largest Size in Two Integer 2-Clustering Problems”, Numer. Anal. Appl., 12:2 (2019), 105–115
Panasenko A., “a Ptas For One Cardinality-Weighted 2-Clustering Problem”, Mathematical Optimization Theory and Operations Research, Lecture Notes in Computer Science, 11548, ed. Khachay M. Kochetov Y. Pardalos P., Springer International Publishing Ag, 2019, 581–592
Alexander Kel'manov, Vladimir Khandeev, Lecture Notes in Computer Science, 11832, Analysis of Images, Social Networks and Texts, 2019, 377
Alexander Kel'manov, Sergey Khamidullin, Vladimir Khandeev, Artem Pyatkin, Communications in Computer and Information Science, 974, Optimization and Applications, 2019, 131
Kel'manov A. Motkova A. Shenmaier V., “An Approximation Scheme For a Weighted Two-Cluster Partition Problem”, Analysis of Images, Social Networks and Texts, Aist 2017, Lecture Notes in Computer Science, 10716, ed. VanDerAalst W. Ignatov D. Khachay M. Kuznetsov S. Lempitsky V. Lomazova I. Loukachevitch N. Napoli A. Panchenko A. Pardalos P. Savchenko A. Wasserman S., Springer International Publishing Ag, 2018, 323–333
Alexander Kel'manov, Vladimir Khandeev, Anna Panasenko, Lecture Notes in Computer Science, 11179, Analysis of Images, Social Networks and Texts, 2018, 294
A. V. Kel'manov, S. A. Khamidullin, V. I. Khandeev, A. V. Pyatkin, “An Exact Algorithm of Searching for the Largest Cluster in an Integer-Valued Problem of 2-Partitioning a Sequence”, Pattern Recognit. Image Anal., 28:4 (2018), 703
Edward Kh. Gimadi, Ivan A. Rykov, Yury V. Shamardin, Communications in Computer and Information Science, 871, Optimization Problems and Their Applications, 2018, 131
A. V. Kel'manov, A. V. Motkova, V. V. Shenmaier, “Approximation scheme for the problem of weighted 2-partitioning with a fixed center of one cluster”, Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), 136–145
V. V. Shenmaier, “An exact algorithm for finding a vector subset with the longest sum”, J. Appl. Industr. Math., 11:4 (2017), 584–593
Kel'manov A. Khandeev V., “Some Algorithms With Guaranteed Accuracy For 2-Clustering Problems With Given Center of One Cluster”, 2017 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), IEEE, 2017, 91–93
Eremeev A.V. Kel'manov A.V. Pyatkin A.V., “On Complexity of Searching a Subset of Vectors With Shortest Average Under a Cardinality Restriction”, Analysis of Images, Social Networks and Texts, AIST 2016, Communications in Computer and Information Science, 661, ed. Ignatov D. Khachay M. Labunets V. Loukachevitch N. Nikolenko S. Panchenko A. Savchenko A. Vorontsov K., Springer International Publishing Ag, 2017, 51–57
A. V. Kel'manov, S. A. Khamidullin, V. I. Khandeev, “Fully polynomial-time approximation scheme for a sequence $2$-clustering problem”, J. Appl. Industr. Math., 10:2 (2016), 209–219
V. V. Shenmaier, “Solving some vector subset problems by Voronoi diagrams”, J. Appl. Industr. Math., 10:4 (2016), 560–566
Edward Gimadi, Ivan Rykov, Lecture Notes in Computer Science, 9869, Discrete Optimization and Operations Research, 2016, 148
E. Kh. Gimadi, I. A. Rykov, “A randomized algorithm for the vector subset problem with the maximal Euclidean norm of its sum”, J. Appl. Industr. Math., 9:3 (2015), 351–357