Processing math: 100%
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2016, Volume 56, Number 10, Pages 1831–1836
DOI: https://doi.org/10.7868/S0044466916100082
(Mi zvmmf10476)
 

On the complexity and approximability of some Euclidean optimal summing problems

A. V. Eremeevab, A. V. Kel'manovac, A. V. Pyatkinac

a Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
b Omsk State University, Omsk, Russia
c Novosibirsk State University, Novosibirsk, Russia
References:
Abstract: The complexity status of several well-known discrete optimization problems with the direction of optimization switching from maximum to minimum is analyzed. The task is to find a subset of a finite set of Euclidean points (vectors). In these problems, the objective functions depend either only on the norm of the sum of the elements from the subset or on this norm and the cardinality of the subset. It is proved that, if the dimension of the space is a part of the input, then all these problems are strongly NP-hard. Additionally, it is shown that, if the space dimension is fixed, then all the problems are NP-hard even for dimension 2 (on a plane) and there are no approximation algorithms with a guaranteed accuracy bound for them unless P=NP. It is shown that, if the coordinates of the input points are integer, then all the problems can be solved in pseudopolynomial time in the case of a fixed space dimension.
Key words: Euclidean space, cluster analysis, search for a subset, norm of sum, NP-hardness, pseudopolynomial solvability, discrete optimization problems.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-00462_а
15-01-00785_а
15-01-00976_а
Received: 20.11.2015
English version:
Computational Mathematics and Mathematical Physics, 2016, Volume 56, Issue 10, Pages 1813–1817
DOI: https://doi.org/10.1134/S0965542516100080
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: Russian
Citation: A. V. Eremeev, A. V. Kel'manov, A. V. Pyatkin, “On the complexity and approximability of some Euclidean optimal summing problems”, Zh. Vychisl. Mat. Mat. Fiz., 56:10 (2016), 1831–1836; Comput. Math. Math. Phys., 56:10 (2016), 1813–1817
Citation in format AMSBIB
\Bibitem{EreKelPya16}
\by A.~V.~Eremeev, A.~V.~Kel'manov, A.~V.~Pyatkin
\paper On the complexity and approximability of some Euclidean optimal summing problems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 10
\pages 1831--1836
\mathnet{http://mi.mathnet.ru/zvmmf10476}
\crossref{https://doi.org/10.7868/S0044466916100082}
\elib{https://elibrary.ru/item.asp?id=26665214}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 10
\pages 1813--1817
\crossref{https://doi.org/10.1134/S0965542516100080}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000386769200014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84992380023}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10476
  • https://www.mathnet.ru/eng/zvmmf/v56/i10/p1831
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:254
    Full-text PDF :43
    References:62
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025