Loading [MathJax]/jax/output/SVG/config.js
Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2013, Issue 4, Pages 3–42 (Mi at4973)  

This article is cited in 42 scientific papers (total in 42 papers)

Surveys

Fractional integro-differential calculus and its control-theoretical applications. I. Mathematical fundamentals and the problem of interpretation

A. G. Butkovskiia, S. S. Postnova, E. A. Postnovaab

a Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia
b Moscow State University, Moscow, Russia
References:
Abstract: The review is devoted to using the fractional integro-differential calculus for description of the dynamics of various systems and control processes. Consideration was given to the basic notions of the fractional integro-differential calculus and the problem of interpretation of the fractional operators. Presented were examples of physical systems described in terms of the apparatus under consideration.
Presented by the member of Editorial Board: I. V. Roublev

Received: 05.03.2012
English version:
Automation and Remote Control, 2013, Volume 74, Issue 4, Pages 543–574
DOI: https://doi.org/10.1134/S0005117913040012
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. G. Butkovskii, S. S. Postnov, E. A. Postnova, “Fractional integro-differential calculus and its control-theoretical applications. I. Mathematical fundamentals and the problem of interpretation”, Avtomat. i Telemekh., 2013, no. 4, 3–42; Autom. Remote Control, 74:4 (2013), 543–574
Citation in format AMSBIB
\Bibitem{ButPosPos13}
\by A.~G.~Butkovskii, S.~S.~Postnov, E.~A.~Postnova
\paper Fractional integro-differential calculus and its control-theoretical applications.~I. Mathematical fundamentals and the problem of interpretation
\jour Avtomat. i Telemekh.
\yr 2013
\issue 4
\pages 3--42
\mathnet{http://mi.mathnet.ru/at4973}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3216537}
\zmath{https://zbmath.org/?q=an:1275.93039}
\transl
\jour Autom. Remote Control
\yr 2013
\vol 74
\issue 4
\pages 543--574
\crossref{https://doi.org/10.1134/S0005117913040012}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000317624600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84876501149}
Linking options:
  • https://www.mathnet.ru/eng/at4973
  • https://www.mathnet.ru/eng/at/y2013/i4/p3
  • This publication is cited in the following 42 articles:
    1. Mohammed Al-Refai, Arran Fernandez, “Comparison principles for a class of general integro-differential inequalities with applications”, Comp. Appl. Math., 43:2 (2024)  crossref
    2. Ricardo Almeida, “Euler–Lagrange-Type Equations for Functionals Involving Fractional Operators and Antiderivatives”, Mathematics, 11:14 (2023), 3208  crossref
    3. M. I. Gomoyunov, N. Yu. Lukoyanov, “Optimal Feedback in a Linear–Quadratic Optimal Control Problem for a Fractional-Order System”, Diff Equat, 59:8 (2023), 1117  crossref
    4. Faïçal Ndaïrou, Delfim F. M. Torres, “Pontryagin Maximum Principle for Incommensurate Fractional-Orders Optimal Control Problems”, Mathematics, 11:19 (2023), 4218  crossref
    5. Vasily E. Tarasov, “General Fractional Calculus in Multi-Dimensional Space: Riesz Form”, Mathematics, 11:7 (2023), 1651  crossref
    6. Alexandru Tudorache, Rodica Luca, “Positive Solutions for a System of Hadamard Fractional Boundary Value Problems on an Infinite Interval”, Axioms, 12:8 (2023), 793  crossref
    7. Hatice Yalman Kosunalp, Mustafa Gulsu, “Towards solving linear fractional differential equations with Hermite operational matrix”, Adv. Studies: Euro-Tbilisi Math. J., 16:2 (2023)  crossref
    8. Vasily E. Tarasov, “Entropy Interpretation of Hadamard Type Fractional Operators: Fractional Cumulative Entropy”, Entropy, 24:12 (2022), 1852  crossref
    9. A. I. Fedotov, “Substantiation of a quadrature-difference method for solving integro-differential equations with derivatives of variable order”, Comput. Math. Math. Phys., 62:4 (2022), 548–563  mathnet  mathnet  crossref  crossref  scopus
    10. Nazakat Nazeer, Muhammad Imran Asjad, Muhammad Khursheed Azam, Ali Akgül, “Study of Results of Katugampola Fractional Derivative and Chebyshev Inequailities”, Int. J. Appl. Comput. Math, 8:5 (2022)  crossref
    11. Amjad Ali, Kamal Shah, Dildar Ahmad, Ghaus Ur Rahman, Nabil Mlaiki, Thabet Abdeljawad, “Study of multi term delay fractional order impulsive differential equation using fixed point approach”, MATH, 7:7 (2022), 11551  crossref
    12. Ohud Almutairi, Adem K{\i}lıçman, “A Review of Hermite–Hadamard Inequality for α-Type Real-Valued Convex Functions”, Symmetry, 14:5 (2022), 840  crossref
    13. Ufa Math. J., 13:1 (2021), 119–130  mathnet  crossref  isi
    14. Zhao D., Yu G., Yu T., Zhang L., “A Probabilistic Interpretation of the Dzhrbashyan Fractional Integral”, Fractals-Complex Geom. Patterns Scaling Nat. Soc., 29:08 (2021), 2150269  crossref  isi
    15. Varghese V. Bhoyar S. Khalsa L., “Thermoelastic Response of a Nonhomogeneous Elliptic Plate in the Framework of Fractional Order Theory”, Arch. Appl. Mech., 91:7 (2021), 3223–3246  crossref  isi
    16. Yu. R. Agachev, A. V. Guskova, “Obobschennyi polinomialnyi metod resheniya zadachi tipa Koshi dlya odnogo drobno-differentsialnogo uravneniya”, Materialy XVII Vserossiiskoi molodezhnoi shkoly-konferentsii «Lobachevskie chteniya-2018»,  23-28 noyabrya 2018 g., Kazan.  Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 176, VINITI RAN, M., 2020, 80–90  mathnet  crossref
    17. B. Bayraktar, “Some new generalizations of Hadamard–type Midpoint inequalities involving fractional integrals”, Probl. anal. Issues Anal., 9(27):3 (2020), 66–82  mathnet  crossref
    18. Ali A., Shah K., Abdeljawad T., Khan H., Khan A., “Study of Fractional Order Pantograph Type Impulsive Antiperiodic Boundary Value Problem”, Adv. Differ. Equ., 2020:1 (2020), 572  crossref  mathscinet  isi
    19. Redhwan S.S., Shaikh S.L., Abdo M.S., “Implicit Fractional Differential Equation With Anti-Periodic Boundary Condition Involving Caputo-Katugampola Type”, AIMS Math., 5:4 (2020), 3714–3730  crossref  mathscinet  isi  scopus
    20. Ayazyan G. Tausheva E., 2020 International Conference on Industrial Engineering, Applications and Manufacturing (Icieam), IEEE, 2020  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:1788
    Full-text PDF :976
    References:124
    First page:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025