Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2021, Volume 13, Issue 1, Pages 119–130
DOI: https://doi.org/10.13108/2021-13-1-119
(Mi ufa548)
 

This article is cited in 4 scientific papers (total in 4 papers)

Generalization of Hadamard-type trapezoid inequalities for fractional integral operators

B. Bayraktar, M. Emin Özdemir

Bursa Uludag University, Faculty of Education, Gorukle Campus, 16059, Bursa, Turkey
References:
Abstract: The role of convexity theory in applied problems, especially in optimization problems, is well known. The integral Hermite-Hadamard inequality has a special place in this theory since it provides an upper bound for the mean value of a function. In solving applied problems from different fields of science and technology, along with the classical integro-differential calculus, fractional calculus plays an important role. A lot of research is devoted to obtaining an upper bound in the Hermite-Hadamard inequality using operators of fractional calculus.
The article formulates and proves the identity with the participation of the fractional integration operator. Based on this identity, new generalized Hadamard-type integral inequalities are obtained for functions for which the second derivatives are convex and take values at intermediate points of the integration interval. These results are obtained using the convexity property of a function and two classical integral inequalities, the Hermite-Hadamard integral inequality and its other form, the power mean inequality. It is shown that the upper limit of the absolute error of inequality decreases in approximately n2 times, where n is the number of intermediate points. In a particular case, the obtained estimates are consistent with known estimates in the literature. The results obtained in the article can be used in further researches in the integro-differential fractional calculus.
Keywords: convexity, Hermite–Hadamard inequality, Hölder inequality, power–mean inequality, Riemann–Liouville fractional Integrals.
Received: 01.04.2020
Bibliographic databases:
Document Type: Article
UDC: 517.518.86, 517.218.244, 517.927.2
MSC: 26A51, 26D15
Language: English
Original paper language: English
Citation: B. Bayraktar, M. Emin Özdemir, “Generalization of Hadamard-type trapezoid inequalities for fractional integral operators”, Ufa Math. J., 13:1 (2021), 119–130
Citation in format AMSBIB
\Bibitem{BayOzd21}
\by B.~Bayraktar, M.~Emin~\"Ozdemir
\paper Generalization of Hadamard-type trapezoid inequalities for fractional integral operators
\jour Ufa Math. J.
\yr 2021
\vol 13
\issue 1
\pages 119--130
\mathnet{http://mi.mathnet.ru/eng/ufa548}
\crossref{https://doi.org/10.13108/2021-13-1-119}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000678390800011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85104228162}
Linking options:
  • https://www.mathnet.ru/eng/ufa548
  • https://doi.org/10.13108/2021-13-1-119
  • https://www.mathnet.ru/eng/ufa/v13/i1/p119
  • This publication is cited in the following 4 articles:
    1. J. E. Nápoles, P. M. Guzmán, B. Bayraktar, “Milne-type integral inequalities for modified (h,m)-convex functions on fractal sets”, Probl. anal. Issues Anal., 13(31):2 (2024), 106–127  mathnet  crossref
    2. Bahtiyar Bayraktar, Juan E. Nápoles Valdés, Florencia Rabossi, Aylen D. Samaniego, “Some extensions of the Hermite-Hadamard inequalities for quasi-convex functions via weighted integral”, Proyecciones (Antofagasta), 42:5 (2023), 1221  crossref
    3. B. Bairaktarov, Kh. E. Napoles Valdes, “Novye obobschennye integralnye neravenstva cherez (h,m)-vypuklye modifitsirovannye funktsii”, Izv. IMI UdGU, 60 (2022), 3–15  mathnet  crossref  mathscinet
    4. Bayraktar B.R., Attaev A.Kh., “Fractional Integral Inequalities For Some Convex Functions”, Bull. Karaganda Univ-Math., 104:4 (2021), 14–27  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:220
    Russian version PDF:127
    English version PDF:26
    References:35
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025