Abstract:
In this article, we establish several inequalities for (h,m)-convex maps, related to weighted integrals, used in previous works. Throughout the work, we show that our results generalize several of the integral inequalities known from the literature.
Keywords:
Hermite–Hadamard inequality, Hölder inequality, power mean inequality, weighted integrals, (m,h)-convex functions.
Citation:
B. Bayraktar, J. E. Nápoles Valdés, “New generalized integral inequalities via (h,m)-convex modified functions”, Izv. IMI UdGU, 60 (2022), 3–15
\Bibitem{BayNap22}
\by B.~Bayraktar, J.~E.~N\'apoles Vald\'es
\paper New generalized integral inequalities via $(h,m)$-convex modified functions
\jour Izv. IMI UdGU
\yr 2022
\vol 60
\pages 3--15
\mathnet{http://mi.mathnet.ru/iimi432}
\crossref{https://doi.org/10.35634/2226-3594-2022-60-01}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4521458}
Linking options:
https://www.mathnet.ru/eng/iimi432
https://www.mathnet.ru/eng/iimi/v60/p3
This publication is cited in the following 2 articles:
J. E. Nápoles, P. M. Guzmán, B. Bayraktar, “New integral inequalities in the class of functions (h,m)-convex”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 24:2 (2024), 173–183
J. E. Nápoles, P. M. Guzmán, B. Bayraktar, “Milne-type integral inequalities for modified (h,m)-convex functions on fractal sets”, Probl. anal. Issues Anal., 13(31):2 (2024), 106–127