Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2016, Volume 207, Issue 3, Pages 331–341
DOI: https://doi.org/10.1070/SM8500
(Mi sm8500)
 

This article is cited in 18 scientific papers (total in 18 papers)

Approximation by simple partial fractions with constraints on the poles. II

P. A. Borodin

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: It is shown that if a compact set KK not separating the plane C lies in the union ˆEE of the bounded components of the complement of another compact set E, then the simple partial fractions (the logarithmic derivatives of polynomials) with poles in E are dense in the space AC(K) of functions that are continuous on K and analytic in its interior. It is also shown that if a compact set K with connected complement lies in the complement C¯D of the closure of a doubly connected domain D¯C with bounded connected components of the boundary E+ and E, then the differences r1r2 of the simple partial fractions such that r1 has its poles in E+ and r2 has its poles in E are dense in the space AC(K).
Bibliography: 9 titles.
Keywords: simple partial fractions, uniform approximation, restriction on the poles, neutral distribution, condenser.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00510
14-01-91158
15-01-08335
Dynasty Foundation
This research was carried out with the financial support of the Russian Foundation for Basic Research (grant nos. 14-01-00510, 14-01-91158, and 15-01-08335) and the Dmitry Zimin Dynasty Foundation.
Received: 02.03.2015
Bibliographic databases:
Document Type: Article
UDC: 517.538.5
MSC: 41A20, 30E10
Language: English
Original paper language: Russian
Citation: P. A. Borodin, “Approximation by simple partial fractions with constraints on the poles. II”, Sb. Math., 207:3 (2016), 331–341
Citation in format AMSBIB
\Bibitem{Bor16}
\by P.~A.~Borodin
\paper Approximation by simple partial fractions with constraints on the poles.~II
\jour Sb. Math.
\yr 2016
\vol 207
\issue 3
\pages 331--341
\mathnet{http://mi.mathnet.ru/eng/sm8500}
\crossref{https://doi.org/10.1070/SM8500}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507482}
\zmath{https://zbmath.org/?q=an:1354.30025}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207..331B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376442700002}
\elib{https://elibrary.ru/item.asp?id=25707816}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84971310308}
Linking options:
  • https://www.mathnet.ru/eng/sm8500
  • https://doi.org/10.1070/SM8500
  • https://www.mathnet.ru/eng/sm/v207/i3/p19
    Cycle of papers
    This publication is cited in the following 18 articles:
    1. P. A. Borodin, A. M. Ershov, “S. R. Nasyrov's Problem of Approximation by Simple Partial Fractions on an Interval”, Math. Notes, 115:4 (2024), 520–527  mathnet  crossref  crossref  mathscinet
    2. M. A. Komarov, “Density of Simple Partial Fractions with Poles on a Circle in Weighted Spaces for a Disk and a Segment”, Vestnik St.Petersb. Univ.Math., 57:1 (2024), 62  crossref
    3. K. Shklyaev, “Approximation by sums of shifts and dilations of a single function and neural networks”, Journal of Approximation Theory, 291 (2023), 105915  crossref
    4. Mikhail A. Komarov, “A Newman type bound for
      $$L_p[-1,1]$$
      -means of the logarithmic derivative of polynomials having all zeros on the unit circle”, Constr Approx, 2023  crossref
    5. M. A. Komarov, “O skorosti interpolyatsii naiprosteishimi drobyami analiticheskikh funktsii s regulyarno ubyvayuschimi koeffitsientami”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 23:2 (2023), 157–168  mathnet  crossref
    6. P. A. Borodin, K. S. Shklyaev, “Density of quantized approximations”, Russian Math. Surveys, 78:5 (2023), 797–851  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    7. P. A. Borodin, “Approximation by Simple Partial Fractions: Universal Sets of Poles”, Math. Notes, 111:1 (2022), 3–6  mathnet  crossref  crossref  mathscinet  isi
    8. Abakumov E., Borichev A., Fedorovskiy K., “Chui'S Conjecture in Bergman Spaces”, Math. Ann., 379:3-4 (2021), 1507–1532  crossref  mathscinet  isi
    9. P. A. Borodin, K. S. Shklyaev, “Approximation by simple partial fractions in unbounded domains”, Sb. Math., 212:4 (2021), 449–474  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    10. P. A. Borodin, “Greedy approximation by arbitrary set”, Izv. Math., 84:2 (2020), 246–261  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. M. A. Komarov, “On the rate of approximation in the unit disc of $H^1$-functions by logarithmic derivatives of polynomials with zeros on the boundary”, Izv. Math., 84:3 (2020), 437–448  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    12. M. A. Komarov, “Approximation to constant functions by electrostatic fields due to electrons and positrons”, Lobachevskii J. Math., 40:1, SI (2019), 79–84  crossref  mathscinet  zmath  isi  scopus
    13. M. A. Komarov, “A lower bound for the $L_2[-1,\,1]$-norm of the logarithmic derivative of polynomials with zeros on the unit circle”, Probl. anal. Issues Anal., 8(26):2 (2019), 67–72  mathnet  crossref  elib
    14. P. A. Borodin, S. V. Konyagin, “Convergence to zero of exponential sums with positive integer coefficients and approximation by sums of shifts of a single function on the line”, Anal. Math., 44:2 (2018), 163–183  crossref  mathscinet  zmath  isi  scopus
    15. M. A. Komarov, “On approximation by special differences of simplest fractions”, St. Petersburg Math. J., 30:4 (2019), 655–665  mathnet  crossref  mathscinet  isi  elib
    16. P. A. Borodin, “Approximation by Sums of the Form $\sum_k\lambda_kh(\lambda_kz)$ in the Disk”, Math. Notes, 104:1 (2018), 3–9  mathnet  crossref  crossref  mathscinet  isi  elib
    17. V. I. Danchenko, M. A. Komarov, P. V. Chunaev, “Extremal and approximative properties of simple partial fractions”, Russian Math. (Iz. VUZ), 62:12 (2018), 6–41  mathnet  crossref  isi
    18. P. A. Borodin, “Approximation by sums of shifts of a single function on the circle”, Izv. Math., 81:6 (2017), 1080–1094  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:822
    Russian version PDF:216
    English version PDF:33
    References:120
    First page:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025