Abstract:
This paper investigates the simple partial fractions (that is, the logarithmic derivatives of polynomials) all of whose poles lie within the angular domain Λγ={z:argz∈(γ,2π−γ)}, for any γ∈[0,π/2]. It is shown that they are contained in a proper half-space of the space Lp(R+) for any p∈(1,p0) (in particular, they are not dense in this space) and conversely, they are dense in Lp(R+) for any p⩾p0, where p0=(2π−2γ)/(π−2γ). The distances from the poles of a simple partial fraction r to the semi-axis R+ are estimated in terms of the degree of the fraction r and its norm in L2(R+). The approximation properties of sets of simple partial fractions of degree at most n are investigated, as well as properties of the least deviations ρn(f) from these sets for the functions f∈L2(R+).
Bibliography: 14 titles.
Keywords:
approximation, simple partial fraction, integral metrics.
\Bibitem{Bor09}
\by P.~A.~Borodin
\paper Approximation by simple partial fractions on the semi-axis
\jour Sb. Math.
\yr 2009
\vol 200
\issue 8
\pages 1127--1148
\mathnet{http://mi.mathnet.ru/eng/sm7466}
\crossref{https://doi.org/10.1070/SM2009v200n08ABEH004031}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2573010}
\zmath{https://zbmath.org/?q=an:1185.30038}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200.1127B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000271676400007}
\elib{https://elibrary.ru/item.asp?id=19066146}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-72849126841}
Linking options:
https://www.mathnet.ru/eng/sm7466
https://doi.org/10.1070/SM2009v200n08ABEH004031
https://www.mathnet.ru/eng/sm/v200/i8/p25
This publication is cited in the following 16 articles:
P. A. Borodin, K. S. Shklyaev, “Density of quantized approximations”, Russian Math. Surveys, 78:5 (2023), 797–851
M. A. Komarov, “Approximation by linear fractional transformations of simple partial fractions and their differences”, Russian Math. (Iz. VUZ), 62:3 (2018), 23–33
V. I. Danchenko, M. A. Komarov, P. V. Chunaev, “Extremal and approximative properties of simple partial fractions”, Russian Math. (Iz. VUZ), 62:12 (2018), 6–41
Tabatabaie S.M., “The Problem of Density on Commutative Strong Hypergroups”, Math. Rep., 20:3 (2018), 227–232
M. A. Komarov, “Criteria for the Best Approximation by Simple Partial Fractions on Semi-Axis and Axis”, J Math Sci, 235:2 (2018), 168
M. A. Komarov, “A criterion for the best uniform approximation by simple partial fractions in terms of alternance. II”, Izv. Math., 81:3 (2017), 568–591
A. R. Alimov, I. G. Tsar'kov, “Connectedness and solarity in problems of best and near-best approximation”, Russian Math. Surveys, 71:1 (2016), 1–77
Tabatabaie S.M., “The problem of density on L2(G) L 2 ( G )”, Acta Math. Hung., 150:2 (2016), 339–345
P. A. Borodin, “Density of a semigroup in a Banach space”, Izv. Math., 78:6 (2014), 1079–1104
A. R. Alimov, I. G. Tsar'kov, “Connectedness and other geometric properties of suns and Chebyshev sets”, J. Math. Sci., 217:6 (2016), 683–730
I. R. Kayumov, “Integral bounds for simple partial fractions”, Russian Math. (Iz. VUZ), 56:4 (2012), 27–37
P. A. Borodin, “Approximation by simple partial fractions with constraints on the poles”, Sb. Math., 203:11 (2012), 1553–1570
A. V. Kayumova, “Skhodimost ryadov prostykh drobei v Lp(R)”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 154, no. 1, Izd-vo Kazanskogo un-ta, Kazan, 2012, 208–213
I. R. Kayumov, “Convergence of series of simple partial fractions in Lp(R)”, Sb. Math., 202:10 (2011), 1493–1504
V. I. Danchenko, “Convergence of simple partial fractions in Lp(R)”, Sb. Math., 201:7 (2010), 985–997
P. V. Chunaev, “On a nontraditional method of approximation”, Proc. Steklov Inst. Math., 270 (2010), 278–284