Loading [MathJax]/jax/output/CommonHTML/jax.js
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1970, Volume 25, Issue 5, Pages 59–103
DOI: https://doi.org/10.1070/RM1970v025n05ABEH003814
(Mi rm5403)
 

This article is cited in 35 scientific papers (total in 35 papers)

The homotopy structure of the linear group of a Banach space

B. S. Mityagin
References:
Abstract: The homotopy type of the linear group of an infinite-dimensional Banach space is as important in the theory of Banach manifolds and bundles as is the (stable) homotopy structure of the orthogonal and unitary groups in the theory of finite-dimensional vector bundles and in K-theory (for more details see [4]). Kuiper has proved [20] the contractibility of the linear group GL(H) of a Hilbert space H, and Neubauer has given a positive answer [34] to the question of the contractibility of GL(lp), 1p<, and gl(c0). At the same time there are examples (the first of which was given by Douady [11]) of Banach spaces with a non-contractible and disconnected linear group. In [30] the author drew attention to the fact that the constructions of Kuiper and Neubauer could be formalized to provide a general procedure for proving (or analysing) the contractibility of the linear group GL(X). This enables us to settle the question of the homotopy structure of the linear groups of many specific Banach spaces. The present paper reviews the results that have been obtained up till now on the contractibility of the linear group of Banach spaces. In § 1 examples are given of Banach spaces with homotopically non-trivial linear groups. The general procedure for analysing the contractibility of GL(X), Theorem 1, is set out in § 2, and the problem of obtaining explicit analytic conditions necessary for the applicability of this procedure is solved in § 3. In §§ 4–6 examples are given of many specific Banach spaces (of smooth and of measurable functions), and the contractibility of their linear groups is proved. § 7 contains remarks on the general procedure and unsolved questions.
Received: 18.12.1969
Bibliographic databases:
Document Type: Article
UDC: 519.4+519.5
Language: English
Original paper language: Russian
Citation: B. S. Mityagin, “The homotopy structure of the linear group of a Banach space”, Russian Math. Surveys, 25:5 (1970), 59–103
Citation in format AMSBIB
\Bibitem{Mit70}
\by B.~S.~Mityagin
\paper The homotopy structure of the linear group of a~Banach space
\jour Russian Math. Surveys
\yr 1970
\vol 25
\issue 5
\pages 59--103
\mathnet{http://mi.mathnet.ru/eng/rm5403}
\crossref{https://doi.org/10.1070/RM1970v025n05ABEH003814}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=341523}
\zmath{https://zbmath.org/?q=an:0232.47046}
Linking options:
  • https://www.mathnet.ru/eng/rm5403
  • https://doi.org/10.1070/RM1970v025n05ABEH003814
  • https://www.mathnet.ru/eng/rm/v25/i5/p63
  • This publication is cited in the following 35 articles:
    1. S. V. Astashkin, “Sequences of independent functions and structure of rearrangement invariant spaces”, Russian Math. Surveys, 79:3 (2024), 375–457  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. Alexander Brudnyi, Fields Institute Monographs, 39, Lectures on Analytic Function Spaces and their Applications, 2023, 283  crossref
    3. V. Astashkin S. Curbera G.P., “Rosenthal'S Space Revisited”, Studia Math., 2022  crossref  isi
    4. St. Petersburg Math. J., 34:3 (2023), 427–438  mathnet  crossref  mathscinet
    5. Nikolski N., “Toeplitz Matrices and Operators”, Toeplitz Matrices and Operators, Cambridge Studies in Advanced Mathematics, 182, Cambridge Univ Press, 2020, 1–430  crossref  isi
    6. Nikolski N., “Toeplitz Matrices and Operators Preface”: Nikolski, N, Toeplitz Matrices and Operators, Cambridge Studies in Advanced Mathematics, 182, Cambridge Univ Press, 2020, XIII+  isi
    7. Alexander Brudnyi, “On Homotopy Invariants of Tensor Products of Banach Algebras”, Integr. Equ. Oper. Theory, 92:2 (2020)  crossref
    8. Alberto Abbondandolo, Thomas O. Rot, “On the homotopy classification of proper Fredholm maps into a Hilbert space”, Journal für die reine und angewandte Mathematik (Crelles Journal), 2020:759 (2020), 161  crossref
    9. St. Petersburg Math. J., 31:5 (2020), 769–817  mathnet  crossref  isi
    10. Alexander Brudnyi, “On the completion problem for algebra”, Journal of Functional Analysis, 2014  crossref
    11. Alexander Brudnyi, Fields Institute Communications, 72, The Corona Problem, 2014, 31  crossref
    12. Alexander Brudnyi, “Holomorphic Banach vector bundles on the maximal ideal space of and the operator corona problem of Sz.-Nagy”, Advances in Mathematics, 232:1 (2013), 121  crossref
    13. S. V. Astashkin, F. A. Sukochev, “Independent functions and the geometry of Banach spaces”, Russian Math. Surveys, 65:6 (2010), 1003–1081  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    14. S. V. Astashkin, F. A. Sukochev, “Series of independent mean zero random variables in rearrangement invariant spaces with the Kruglov property”, J. Math. Sci. (N. Y.), 148:6 (2008), 795–809  mathnet  crossref  mathscinet  elib  elib
    15. S. V. Astashkin, F. A. Sukochev, “Sums of independent functions in symmetric spaces with the Kruglov property”, Math. Notes, 80:4 (2006), 593–598  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    16. G. Belitskii, A. Markus, “Similarity invariant subspaces and lie ideals in operator algebras”, Integr equ oper theory, 44:2 (2002), 127  crossref
    17. F. A. Sukochev, “Linear-topological classification of separableL p-spaces associated with von Neumann algebras of type I”, Isr J Math, 115:1 (2000), 137  crossref  mathscinet  zmath  isi
    18. P. G. Dodds, F. A. Sukochev, “Contractibility of the linear group in Banach spaces of measurable operators”, Integr equ oper theory, 26:3 (1996), 305  crossref  mathscinet  zmath  isi
    19. Manuel Gonzalez, “On essentially incomparable Banach spaces”, Math Z, 215:1 (1994), 621  crossref  mathscinet  zmath  isi
    20. Laura Burlando, “Spectral Continuity in Some Banach Algebras”, Rocky Mountain J. Math., 23:1 (1993)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1055
    Russian version PDF:385
    English version PDF:68
    References:150
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025